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Abstract  
 

This Thesis consists of three parts: 

In the first part of the thesis, the idea of the Eshelby equivalent inclusion 

theory is coupled with the Fictitious stress method (FSM) as a meshless 

technique to model inhomogeneity problems. The FSM is regarded herein as an 

indirect boundary element formulation. The problem is divided into 

complementary and particular parts. The particular solution is obtained using 

Eshelby theory. Hence the complementary solution could be obtained using the 

FSM. Analytical solutions are used to model circular inclusions. In this 

approach there is no meshing on the boundary or inside the domain. The 

problem is solved by distributing points on the boundary and inserting points at 

the center of the inhomogeneities. Although the fictitious stresses on the 

boundary is assumed constant and also the eigenstrain inside the inclusion is 

assumed uniform the results are in good agreement with the direct boundary 

integral equation method and the finite element method as will be shown in 

chapter 3. 

In the second part of the thesis, a new simulation of damage in the direct 

boundary element formulation is presented. The Eshelby equivalent inclusion 

theory is coupled with the direct boundary integral equation to model the 

change in the elastic properties due to damage. A finite element-like stiffness 

matrix is formed for the damaged domain, where the problem stiffness matrix 

is obtained directly on the boundary (in condensed form). The developed 

method is a boundary-only method although the domain contains damaged 

parts. A system of nonlinear equation is then solved using a load control 

approach (secant method). Both local and non-local damage models are 

considered. Several examples are presented to demonstrate the validity and the 

accuracy of the proposed formulation as will be shown in chapter 4. 

In the third part, the application of the damage modelling within the 

finite element method is reviewed. Hence the basic theory of the variational 

boundary integral equations (VBIE) is discussed, where a finite element-like 
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stiffness matrix obtained using VBIE is used to model the damage. The VBIE 

gives the ability to use large dimensions compared to the conventional finite 

element. Although using coarse mesh the results as will be shown in chapter 5 

are in good agreement with the conventional finite element. 

 

       



 

7 

 

Table of Contents 

Chapter 1: Introduction ...............................................................................14 

1.1 Problem statement and background ...................................................14 

1.2 Thesis objectives ...............................................................................18 

1.3 Thesis organization ...........................................................................18 

Chapter 2: Theoretical background .............................................................19 

2.1. Introduction ......................................................................................19 

2.2. Governing equations of 2D Elasticity ................................................19 

2.3. Fundamental solutions for 2D Elasticity ...........................................20 

2.4. Boundary element method ................................................................20 

2.4.1. Direct Boundary integral equation method ........................................21 

2.4.2. Indirect Boundary element method ...................................................22 

2.4.3. Variational Boundary integral equation method ................................23 

2.5. Eshelby equivalent inclusion theory ..................................................26 

2.6. Continuum Damage Mechanics ........................................................28 

2.7. Coupling Eshelby theory with DBIEM .............................................31 

2.8. Conclusions ......................................................................................32 

Chapter 3: Indirect BIE with inhomogeneities ............................................33 

3.1. Introduction ......................................................................................33 

3.2. Fictitious Stress Method ....................................................................33 

3.3. The proposed FSM with inhomogeneities .........................................36 

3.4. The proposed iterative approach .......................................................40 

3.5. The proposed direct approach ...........................................................42 

3.6. Post processing .................................................................................42 

3.7. Numerical examples ..........................................................................43 

3.7.1. Kirsch problem .................................................................................43 

3.7.2. Square plate with single inhomogeneity ............................................45 

3.7.3. Square plate with two inhomogeneities .............................................49 

3.7.4. Tapered cantilever with voids ...........................................................57 

3.7.5. Bar with inhomogeneities .................................................................62 

3.8. Conclusions ......................................................................................65 

Chapter 4: Damage simulation in Direct BIE ..............................................66 

4.1. Introduction ......................................................................................66 



 

8 

 

4.2. Boundary integral equation formulation ............................................66 

4.3. The proposed nonlinear matrix equations ..........................................68 

4.4. The proposed incremental iterative approach ....................................72 

4.5. Visualizing the damage patterns ........................................................78 

4.6. Numerical examples ..........................................................................79 

4.6.1 Fixed-Fixed beam .............................................................................79 

4.6.2 Simply supported beam .....................................................................86 

4.6.3 Simply supported beam with a notch.................................................91 

4.7. Numerical discussion ........................................................................98 

4.7.1. Boundary discretization ....................................................................98 

4.7.2. Inclusion pattern ...............................................................................98 

4.7.3. Inclusion diameter .............................................................................99 

4.7.4. Residual tolerance level ....................................................................99 

4.7.5. Maximum number of nonlinear iterations ....................................... 100 

4.6.4 Conclusions .................................................................................... 100 

Chapter 5: Damage simulation in Variational BIE .................................... 112 

5.1. Introduction .................................................................................... 112 

5.2. Special type of finite elements using VBIE ..................................... 112 

5.3. Solution algorithm .......................................................................... 113 

5.4. Numerical examples ........................................................................ 116 

5.4.1. Simply supported beam ................................................................... 116 

5.4.2. Fixed-Fixed beam ........................................................................... 119 

5.4.3. Simple beam with notch .................................................................. 121 

5.5. Conclusions .................................................................................... 124 

Chapter 6: Summary and Future work ...................................................... 125 

6.1. Summary......................................................................................... 125 

6.2. Future work..................................................................................... 125 

Appendix A .............................................................................................. 126 

Appendix B ............................................................................................... 127 

Appendix C ............................................................................................... 128 

REFERENCES ......................................................................................... 129 

ARABIC SUMMARY .............................................................................. 136 

 



 

9 

 

 

LIST OF FIGURES 

 

Fig.(2.1):2D Elasticity problem  

Fig.(2.2):Source points 

Fig.(2.3):Inhomogeneity and its equivalent inclusion problem 

Fig.(2.4):Different inclusion patterns and the interaction radius. 

Fig.(3.1):A general problem with FSM points and associated intervals. 

Fig.(3.2):The solution concept of dividing the problem into complementary and 

particular problems. 

Fig.(3.3):A flow diagram of the proposed iterative approach. 

Fig.(3.4):Kirsch problem example 3.7.1 

Fig.(3.5):Stresses in the x-direction in example 3.7.1 

Fig.(3.6):Stress in the y-direction in example 3.7.1 

Fig.(3.7):Square plate with single inhomogeneity in example 3.7.2 

Fig.(3.8):Stress in the y-direction in example 3.7.2, case(1) (soft 

inhomogeneity). 

Fig.(3.9):Stress in the x-direction in example 3.7.2, case(2) (soft 

inhomogeneity). 

Fig.(3.10):Stress in the y-direction for example 3.7.2, case(2) (soft 

inhomogeneity). 

Fig.(3.11):Stress in the x-direction for example 3.7.2, case(2) (stiff 

inhomogeneity). 

Fig.(3.12):Stress in the y-direction for example 3.7.2, case(2) (stiff 

inhomogeneity). 

Fig.(3.13):Square plate with two equal diameter inhomogeneities in example 

3.7.3. 

Fig.(3.14):Square plate with two unequal diameter inhomogeneities in example 

3.7.3. 

Fig.(3.15):Stress in the x-direction along the vertical dashed line (case 1) in 

example 3.7.3. 



 

10 

 

Fig.(3.16):Stress in the y-direction along the vertical dashed line (case 1) in 

example 3.7.3. 

Fig.(3.17):Stress in the x-direction along the horizontal dashed line (case 1) in 

example 3.7.3. 

Fig.(3.18):Stress in the y-direction along the horizontal dashed line (case 1) in 

example 3.7.3. 

Fig.(3.19):Stress in the x-direction along the vertical dashed line (case 2) in 

example 3.7.3. 

Fig.(3.20):Stress in the y-direction along the vertical dashed line (case 2) in 

example 3.7.3. 

Fig.(3.21):Stress in the x-direction along the vertical dashed line (case 3) in 

example 3.7.3. 

Fig.(3.22):Stress in the y-direction along the vertical dashed line (case 3) in 

example 3.7.3. 

Fig.(3.23):Stress in the x-direction along the horizontal dashed line (case 3) in 

example 3.7.3. 

Fig.(3.24):Stress in the y-direction along the horizontal dashed line (case 3) in 

example 3.7.3. 

Fig.(3.25):Stress in the x-direction along the vertical dashed line (case 4) in 

example 3.7.3. 

Fig.(3.26):Stress in the y-direction along the vertical dashed line (case 4) in 

example 3.7.3. 

Fig.(3.27):The tapered cantilever in example 3.8. 

Fig.(3.28):The FSM points distribution in example 3.8. 

Fig.(3.29):The used FEM discretization in example 3.8. 

Fig.(3.30):Stresses in x-direction along section A-A in example 3.8. 

Fig.(3.31):Stresses in y-direction along section A-A for example 3.8. 

Fig.(3.31):Stresses in y-direction along section A-A for example 3.8. 

Fig.(3.32):Shear Stresses along section A-A for example 3.8. 

Fig.(3.33):The deformed shape in example 3.8. 

Fig.(3.34):The bar in example 3.9. 



 

11 

 

Fig.(3.35):The FE discretization of the control volume in example 3.9. 

Fig.(3.36):The bar tip displacement for example 3.9. 

Fig.(3.37):Elapsed time of computation in example 3.9. 

Fig.(5.1):Fig.(4.1):The actual and the discretized problems. 

Fig.(5.1):Fig.(4.2):A load-displacement curve showing the secant algorithm. 

Fig.(5.1):Fig.(4.3):Flow chart of the proposed incremental-iterative approach. 

Fig.(5.1):Fig.(4.4):Dimensions of the fixed-fixed beam in example 4.6.1. 

Fig.(5.1):Fig.(4.5):The computed nonlinear load-displacement curve for example 

4.6.1. 

Fig.(5.1):Fig.(4.6):The predicted damage patterns for example 4.6.1. 

Fig.(5.1):Fig.(4.7):The load-displacement curve for example 4.6.1 with 

intersected inclusion patterns. 

Fig.(5.1):Fig.(4.8):The load-displacement curve for example 4.6.1 with 

staggered inclusion patterns. 

Fig.(5.1):Fig.(4.9):Dimensions of the simply supported beam in examples 4.6.2. 

Fig.(5.1):Fig.(4.10):Load-displacement curve for example 4.6.2. 

Fig.(5.1):Fig.(4.11):The predicted damage contour map for example 4.6.2 at load 

level of 4993.60 N. 

Fig.(5.1):Fig.(4.12):The predicted damaged areas (inclusions) for example 4.6.2 

at load level of 4993.60 N 

Fig.(5.1):Fig.(4.13):Dimensions of the notched simply supported beam in 

example 4.6.3. 

Fig.(5.1):Fig.(4.14):Load-displacement curve for example 4.6.3. 

Fig.(5.1):Fig.(4.15):The predicted damage contour map (Nonlocal damage) for 

example 4.6.3. 

Fig.(5.1):Fig.(4.16):The predicted damaged areas (inclusions) (Nonlocal 

damage) for example 4.6.3. 

Fig.(5.1):Fig.(4.17):The predicted damage contour map (Nonlocal strain) for 

example 4.6.3. 

Fig.(5.1):Fig.(4.18):The predicted damaged areas (inclusions) (Nonlocal strain) 

for example 4.6.3. 



 

12 

 

Fig.(5.1):Fig.(4.19):Load-displacement curve for example 4.6.2 with different 

boundary discretizations. 

Fig.(5.1):Fig.(4.20):Load-displacement curve for example 4.6.3 with different 

boundary discretizations. 

Fig.(5.1):Fig.(4.21):Load-displacement curve for example 4.6.2 with different 

inclusion patterns. 

Fig.(5.1):Fig.(4.22):Load-displacement curve for example 4.6.3 with different 

inclusion patterns. 

Fig.(5.1):Fig.(4.23):Load-displacement curve for example 4.6.2 with different 

inclusion diameters (intersected case). 

Fig.(5.1):Fig.(4.24):Load-displacement curve for example 4.6.2 with different 

inclusion diameters (staggered case). 

Fig.(5.1):Fig.(4.25):Load-displacement curve for example 4.6.3 with different 

inclusion diameters (intersected case) 

Fig.(5.1):Fig.(4.26):Load-displacement curve for example 4.6.3 with different 

inclusion diameters (staggered case). 

Fig.(5.1):Fig.(4.27):Load-displacement curve for example 4.6.2 with different 

tolerance level. 

Fig.(5.1):Fig.(4.28):Load-displacement curve for example 4.6.3 with different 

tolerance level. 

Fig.(5.1):Finite element according to the VBIE 

Fig.(5.2):Mesh1 of the domain of half of the problem in example 5.4.1. 

Fig.(5.3):Mesh 2 of the domain of half of the problem in example 5.4.1. 

Fig.(5.4):Load-displacement curve of example 5.4.1. 

Fig.(5.5):Mesh 1 of the domain of half of the problem in example 5.4.2. 

Fig.(5.6):Mesh 2 of the domain of half of the problem in example 5.4.2. 

Fig.(5.7):Load-displacement curve of example 5.4.2. 

Fig.(5.8):Mesh 1 of the domain of half of the problem in example 5.4.3. 

Fig.(5.9):Mesh 2 of the domain of half of the problem in example 5.4.3. 

Fig.(5.10):Load-displacement curve of example 5.4.3. 

 



 

13 

 

 

 

LIST OF SYMBOLS AND ABREVIATIONS 

 

𝜎𝑖𝑗, 𝜀𝑘𝑙 , 𝐶𝑖𝑗𝑘𝑙 Stress, Strain and elasticity tensor 

E, G,   Young`s modulus, shear modulus, Poisson`s ratio 

𝑥, 𝜉 Field point and source point position vector 

𝑟 Position vector  

R Characteristic length 

U𝑖𝑗
∗ , T𝑖𝑗

∗ , σ𝑖𝑗𝑘
∗  The fundamental solution for displacement, traction, and stress 

ε𝑗𝑘
𝑜  , σ𝑗𝑘

𝑜  Eigenstrain and eigenstress 

D Scalar Damage variable 

FEM Finite element method 

BEM Boundary element method 

BIE Boundary integral equation 

FSM Fictitious stress method 

VBIE Variational boundary integral equation 

 

 

 

 

 

 

 

 

 

 



 

14 

 

 

Chapter 1: Introduction 

1.1 Problem statement and background  

Inhomogeneity problems have important applications in engineering. For 

example, modelling composite materials, damage, cracks and dislocations 

could be considered as inhomogeneities [63]. 

The inhomogeneity problem has been modelled using the direct boundary 

integral equation method (DBIEM) in several researches [19-21,61], but no 

research has been reported to use meshless methods for such a problem. 

Meshless methods are very attractive as they get rid of the meshing 

problem (recall Belytschko et al. [4]). The method of fundamental solution 

(MFS) [10] is regarded, in the literature, as the only meshless method based on 

the indirect boundary element method. Alternatively, the fictitious stress 

method (FSM) [8,9,12,60], the displacement discontinuity method (DDM) [8], 

the non-singular method of fundamental solution (NMFS) [28,32,33,36] and 

the boundary node method (BNM) [30,41,62] could be also regarded as 

meshless methods as only points are presented to describe the problem 

boundary. All relevant integrals are performed analytically; i.e. no numerical 

integration is employed. In the MFS sources are placed outside the boundary of 

the problem on a fictitious boundary (to avoid singularities), where the solution 

is formed as the superposition of several states employing relevant fundamental 

solutions. Its main problem is the location of the fictitious boundary which 

makes the solution not unique [10]. In the NMFS the sources are distributed 

over circular disks whose centers are on the boundary. Employing this trick the 

singularity problem is avoided and in the same time the method still gains the 

advantage of being a meshless method. Despite they were developed prior to 

the NMFS, the FSM and the DDM, in that sense, also could be regarded as 

meshless techniques as they integrate the relevant fundamental solutions over 
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lines (instead of disks in the NMFS) which also could be located on the 

problem boundary. Therefore, such methods are even more powerful compared 

to the NMFS, as the later accuracy is still dependent on the size of the chosen 

disk. It has to be noted that the advantage of FSM, DDM and NMFS over 

BNM (which also uses analytical integration) is that there is no interchange 

between influence matrices columns in case of different prescribed boundary 

conditions. 

Carpinteri et.al [8] used the FSM and DDM to model microcracks propagation 

in brittle materials subjected to compression. Also, Carpenteri and Yang [9] 

used the FSM to study microcracks propagation and intersection by 

superposition, where the FSM was first used to calculate the internal stresses in 

absence of microcracks then their effects were added. Liu and Sarler [33] used 

NMFS to study bi-material problems where they discretized the interface and 

solved the problem. 

The study of damage mechanics is important in engineering as it predicts 

the structure’s failure load, so it can be used in repair problems to interpret the 

origin of the occurred damage. The continuum damage mechanics is the 

approach to study the degradation of the medium properties due to damage. 

There are two approaches to deal with damage the first is from the 

phenomenological point of view where the damage is described by changing of 

the material properties according to Kachanouv [43], the second is from the 

micromechanical point of view. Here the first approach is used. 

When dealing with quasi-brittle materials due to strain softening the 

problem becomes ill-conditioned and mesh dependent [1,2,25,26,49]. So, a 

localization limiter is needed to overcome this problem [26]. One of the 

localization limiters is the nonlocal damage theory. Where a chosen variable is 

replaced by its weighted average in a relevant nonlocal integral type 

[2,25,26,49] or incorporating higher order gradients in the constitutive model in 

the nonlocal differential type [44].  

Simulating damage using the finite element method (FEM) [25,26,13] is 

carried out in an explicit procedure, where in each damaged element, a 
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damaged material property is directly assigned. As in FEM, Zihua Zhang et al. 

[64] modeled the nonlocal damage using the scaled boundary finite element 

method (SBFEM). The problem domain is discretized into cells where each cell 

is assigned with different material properties according to the damage level. 

This formulation suffers the same disadvantage as that of the FEM in terms of 

the need to discretize the whole domain, which loses the advantage of the 

SBFEM. 

Silva and Castro [52-56] have simulated the damage using non-

conventional finite elements, hybrid mixed [52,53,56] and the hybrid Trefftz 

[54]. In the hybrid mixed the stress and the displacement are approximated 

inside the domain using Legendre polynomial and on the boundary the 

displacement is approximated using the usual shape function. In the hybrid 

Trefftz the displacement only is approximated inside the domain using Trefftz 

function and on the boundary the displacement is approximated using the usual 

shape functions.         

In the boundary element method (BEM) [7], where the discretization is 

carried only on the boundary, the change in material properties due to domain 

damage was modeled by one of three approaches. The first approach is to apply 

initial strain or initial stress to the homogeneous problem. The second approach 

is to discretize the domain with subregions and change the overall property of 

each subregion according to the damage level. The third approach is to couple 

the BEM with the FEM to use the advantage of the FEM in explicitly modeling 

damage. 

The first approach was considered in the work of Rajgelj et al. [51] and 

Herding and Kuhn [22], where local damage is modeled by discretizing the 

domain into cells. It has to be noted that [51] considered quasi-brittle materials 

and [22] elastoplastic materials. Both [51] and [22] applied the continuum 

damage mechanics (CDM) approach [43] in their formulation. Lin et al. [31] 

simulated the nonlocal damage for quasi-brittle materials using initial stress. 

The plasticity damage model with yield degradation was considered in [31]. 

Sladek et al. [57] used the first approach to model elastoplastic materials. Botta 
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et al. [5,6] and Mallardo [35] applied initial stress to model nonlocal damage. 

In [35] the CDM approach in [11] was used to model the damage and the arc 

length technique [34] was used to solve the nonlinear equations. Peixoto et al. 

[45] applied initial strain with the nonlocal damage (using CDM approach). In 

reference [45], the variation in strain is decomposed into strain due to the 

external applied load and another strain due to residual load. This 

decomposition made it easy to use several control methods in their algorithm 

with application to the elastoplastic materials and materials with degrading 

elasticity. Peixoto et al. [47] applied also initial strain with nonlocal damage 

(using CDM approach) as in [45], but with different numerical integration 

procedure for the calculation of the averaged variable. Peixoto et al. [46] used 

the first approach coupled with the strong discontinuity analysis to model the 

strain softening to overcome the size effect due to localization. 

Considering the second approach: Garcia et al. [17] modeled the nonlocal 

damage using CDM approach. The grid method [15] is used for the nonlocal 

approach, so the subregion dimensions are assigned equal to the interaction 

radius (which is obtained from experimental results). The average of the strain 

is carried out over each subregion. The disadvantage of this simulation is the 

domain discretization which makes the BEM lose its main advantage of 

discretizing the problem boundary only.  

Considering the third approach Mobasher and Waisman [40] studied the 

damage problem by coupling the BEM and the FEM (nonlocal damage is 

used). The damaged part is modeled using the FEM and the rest of the problem, 

which is linear, is modeled using the BEM. The main disadvantage of this 

model is the need to prior knowledge of the locations of the damaged parts in 

the problem before the analysis, which of course is not known in the practical 

problems. In chapter 5 and 6, it will be demonstrated that the BEM can model 

damage without coupling with the FEM.   

Eshelby [15] in 1957 setup a theory to solve inhomogeneous problems in 

elasticity where the problem can be solved as a homogeneous problem with a 

prescribed strain (eigenstrain) at the locations of inhomogeneities. This theory 
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is suitable to be coupled with the boundary element method where no domain 

discretization is required. 

1.2 Thesis objectives 

 The object of this research is:  

1. Using the Variational formulation in BEM to model damage in 2D elasticity 

problems. 

2. Coupling indirect boundary integral equation as a meshless technique with 

Eshelby’s theory to model 2D elasticity problems with inhomogeneities. 

3. Introducing a new damage modeling using Eshelby’s theory of equivalent 

inclusions coupled with direct boundary integral equation for 2D elasticity 

problems. 

1.3 Thesis organization 

This thesis consists of six chapters after this chapter. These chapters 

contain the followings: 

Chapter 2: Theoretical background. 

Chapter 3: Indirect BIE with inhomogeneities. 

Chapter 4: Damage simulation in Direct BIE. 

Chapter 5: Damage simulation in Variational BIE. 

Chapter 6: Conclusion. 
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Chapter 2: Theoretical background 

2.1. Introduction 

In this chapter a theoretical background is introduced for different 

approaches for the boundary element method, direct, indirect boundary integral 

equations and the boundary integral equation based on the variational principle. 

Also, in this chapter Eshelby’s theory for equivalent inclusions is introduced 

and how it is coupled with the direct boundary integral equation to solve 

problem with inhomogeneities.     

2.2. Governing equations of 2D Elasticity  

Consider a 2D elasticity problem as shown in Fig.(2.1) the governing system of 

equations (in the absence of body load) are [7]: 

 

 

 

 

 

 

 

𝜎𝑖𝑗,𝑗 = 0 (2.1)  

𝑢𝑖 = 𝑢̅𝑖 on  Γ𝑢 (2.2)  

𝑡𝑖̅ = 𝜎𝑖𝑗𝑛𝑗  on  Γ𝑡 (2.3)  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (2.4)  

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (2.5)  

Where, 𝜎𝑖𝑗, 𝜀𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙  are the stress, strain and elasticity tensor. 𝑢𝑖 is the 

displacement vector on the boundary, 𝑢̅𝑖 and 𝑡𝑖̅ are the vectors of known 

  

Fig.(2.1): 2D Elasticity problem 

Γ = Γ𝑢 ∪ Γ𝑡 

Ω 

Γt 

Γu 

𝑡𝑖̅ 
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displacements and tractions on the boundary. 𝑛𝑗  is the outward normal to the 

boundary.       

𝐶𝑖𝑗𝑘𝑙 =
2𝐺𝜈

(1 − 2𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (2.6)  

𝐺 =
𝐸

2(1 + 𝜈)
 (2.7)  

Where 𝐺, 𝐸 and 𝜈 are the shear modulus, Young’s modulus and Poisson’s 

ratio, respectively. 

2.3. Fundamental solutions for 2D Elasticity 

The fundamental solution is the solution of the problem in infinite domain due 

to a unit load. 

𝑈𝑖𝑗
∗ (𝜉, 𝑥) =

−1

8𝜋(1 − 𝜈)𝐺
[(3 − 4𝜈)𝑙𝑛(𝑟)𝛿𝑗𝑖 − 𝑟,𝑖𝑟,𝑗] (2.8)  

𝑇𝑖𝑗
∗ (𝜉, 𝑥) =

−1

4𝜋(1 − 𝜈)𝑟
[𝑟,𝑛 ((1 − 2𝜈)𝛿𝑗𝑖 + 2𝑟,𝑖𝑟,𝑗)

− (1 − 2𝜐)(𝑟,𝑖𝑛𝑗 − 𝑟,𝑗𝑛𝑖)] 

(2.9)  

𝜎𝑖𝑗𝑘
∗ (𝜉, 𝑥) =

−1

4𝜋(1 − 𝜈)𝑟
[(1 − 2𝜈)[(𝑟,𝑘𝛿𝑗𝑖 + 𝑟,𝑗𝛿𝑖𝑘 − 𝑟,𝑖𝛿𝑗𝑘)+2𝑟,𝑖𝑟,𝑗𝑟,𝑘] (2.10)  

𝑈𝑖𝑗
∗ (𝜉, 𝑥)and 𝑇𝑖𝑗

∗ (𝜉, 𝑥) are the fundamental solutions of displacement and 

traction [7] in j direction at field point x due to unit load in i direction at source 

point 𝜉. 𝜎𝑖𝑗𝑘
∗ (𝜉, 𝑥) is the fundamental solution of stress [7] in j direction acting 

upon plane whose normal is in k direction due to a unit load in i direction.    

2.4. Boundary element method  

The boundary element method (BEM) is a semi-analytical method, where only 

the boundary is discretized. The method is divided into three main methods: 
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1. Direct boundary integral equation method 

2. Indirect boundary element method 

3. Variational boundary integral equation method  

2.4.1.Direct Boundary integral equation method 

In this method the governing differential equation Eq.(2.1) is converted to 

integral equation using Green’s identity [7] as follows: 

𝑐𝑖𝑗(𝜉)𝑢𝑗(𝜉) = ∫𝑈𝑖𝑗
∗ (𝜉, x)𝑡𝑗(x)𝑑Γ(x)

Γ

−∫𝑇𝑖𝑗
∗ (𝜉, x)𝑢𝑗(x)𝑑Γ(x)

Γ

 (2.11)  

𝑐𝑖𝑗(𝜉) = {
0 𝜉 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛
1 𝜉 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

𝐺𝑒𝑡 𝑖𝑡 𝑢𝑠𝑖𝑛𝑔 𝑟𝑖𝑔𝑖𝑑 𝑏𝑜𝑑𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝜉 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
 (2.12)  

Where, 𝑢𝑗(x) and 𝑡𝑗(x) are the displacements and tractions at the field point x 

in j direction. Eq.(2.11) represents the boundary integral equation for 

displacement.   

In Eq.(2.11) the integrals are on the boundary of the problem, and there is no 

domain integral. So, for any problem the boundary is only discretized. The 

discretization of the boundary is only needed to solve the integrals, unlike the 

finite element method where the domain discretization is needed to 

approximate the governing equations. Equation (2.11) is an exact form of 

Eq.(2.1). 

The matrix form of Eq.(2.11) is [7]: 

[𝐻]2𝑁×2𝑁{𝑢}2𝑁×1 = [𝐺]2𝑁×6𝑁𝐸{𝑡}6𝑁𝐸×1 (2.13)  

Where, NE is the number of elements used to discretize the boundary and N is 

the number of nodes.    

Solving Eq.(2.13) the displacements and tractions at the boundary are known. 

To get the internal displacement substitute in Eq.(2.11). To get the internal 

strain differentiate Eq(2.11) with respect to the source point 𝜉 which gives: 

𝜀𝑖𝑚(𝜉) = ∫𝑈𝑖𝑗𝑚
∗ (𝜉, x)𝑡𝑗(x)𝑑Γ(x)

Γ

− ∫𝑇𝑖𝑗𝑚
∗ (𝜉, x)𝑢𝑗(x)𝑑Γ(x)

Γ

 (2.14)  
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Where, 

𝑈𝑖𝑗𝑚
∗ (𝜉, 𝑥) =

1

8𝜋(1 − 𝜈)𝐺𝑟
[(1 − 2𝜈)(𝑟,𝑚𝛿𝑗𝑖 + 𝑟,𝑖𝛿𝑗𝑚) −𝑟,𝑗𝛿𝑖𝑚

+ 2𝑟,𝑚𝑟,𝑖𝑟,𝑗] 
(2.15)  

𝑇𝑖𝑗𝑚
∗ (𝜉, 𝑥) =

−1

4𝜋(1 − 𝜈)𝑟2
[2𝑟,𝑛(−𝜈(𝑟,𝑚𝛿𝑗𝑖 + 𝑟,𝑖𝛿𝑗𝑚) −𝑟,𝑗𝛿𝑖𝑚

+ 4𝑟,𝑚𝑟,𝑖𝑟,𝑗) − 2(1 − 2𝜈)𝑟,𝑖𝑛𝑗𝑟,𝑚

− 2𝜈𝑟,𝑗(𝑛𝑖𝑟,𝑚 + 𝑛𝑚𝑟,𝑖)

− (1 − 2𝜈)(𝑛𝑚𝛿𝑗𝑖 + 𝑛𝑖𝛿𝑗𝑚)+(1 − 2𝜈)𝑛𝑗𝛿𝑖𝑚] 

(2.16)  

2.4.2.Indirect Boundary element method 

In this method instead of solving the real problem, an infinite domain is solved 

subjected to unknown forces 𝑃𝑖 in order to make its boundary condition the 

same as the real problem Fig.(2.2) [12,32]. 

From Fig.(2.2a) 

𝑢𝑗(𝑥) = ∑ 𝑈𝑖𝑗
∗ (𝑥, 𝜉𝑘)𝑃𝑖

𝑘=𝑁

𝑘=1

 (2.17)  

   

Fig.(2.2): Source points 

(b) Distributed sources  
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(a) Discrete Source points 

𝜉𝑘  
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𝑡𝑗(𝑥) = ∑ 𝑇𝑖𝑗
∗(𝑥, 𝜉𝑘)𝑃𝑖

𝑘=𝑁

𝑘=1

 (2.18)  

The unknown forces are placed at the source points 𝜉𝑘. If the source points are 

placed outside the problem domain as in Fig.(2.2) then Eqs.(2.17) and (2.18) 

are regular (not singular) but the problem solution will depend on the distance 

at which the source points are placed, i.e. the solution is not unique. 

In order to overcome the problem of singularity of the above equations 

distributed sources Fig.(2.2b) are used so that the 2 above equations can be 

written as follows: 

𝑢𝑗(𝑥) = ∑ ∫𝑈𝑖𝑗
∗ (𝑥, 𝜉)𝑃𝑖(𝜉)𝑑Γ(𝜉)

Γ𝑘

𝑘=𝑁

𝑘=1

 (2.19)  

𝑡𝑗(𝑥) = ∑ ∫𝑇𝑖𝑗
∗ (𝑥, 𝜉)𝑃𝑖(𝜉)𝑑Γ(𝜉)

Γ𝑘

𝑘=𝑁

𝑘=1

 (2.20)  

2.4.3.Variational Boundary integral equation method 

In this method the principle of minimum total potential energy is used to 

construct the boundary integral equation to solve the 2D elasticity problem. 

The total potential energy Π (with the absence of body load) can be written as 

follows [14]: 

Π(𝑢𝑖) = ∫
1

2
𝜎𝑖𝑗(𝑦)𝜀𝑖𝑗(𝑦)𝑑Ω(𝑦)

Ω

− ∫ 𝑡𝑖̅(𝑥)𝑢𝑖(𝑥)𝑑Γ(𝑥)

Γ𝑡

 (2.21)  

with boundary conditions  

𝑢𝑖 = 𝑢̅𝑖 on Γ𝑢 (2.22)  

𝑡𝑖 = 𝑡𝑖̅ on Γ𝑡 (2.23)  

 Using Lagrange’s multiplier and let: 
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  𝑢𝑖 = 𝑢̃𝑖 on Γ (2.24)  

Therefore, Eq.(2.21) can be written as: 

Π(𝑢𝑖 , 𝑢̃𝑖 , 𝜆𝑖) = ∫
1

2
𝜎𝑖𝑗(𝑦)𝜀𝑖𝑗(𝑦)𝑑Ω(𝑦)

Ω

+ ∫𝜆𝑖(𝑥)(𝑢̃𝑖(𝑥) − 𝑢𝑖(𝑥))𝑑Γ(𝑥)

Γ

− ∫ 𝑡𝑖̅(𝑥)𝑢̃𝑖(𝑥)𝑑Γ(𝑥)

Γ𝑡

 

(2.25)  

With boundary conditions  

𝑢𝑖 = 𝑢̅𝑖 on Γ𝑢 (2.26)  

Minimizing Eq.(2.25), it is found that Lagrange’s multiplier must be equal to 

the traction on the boundary 𝑡̃𝑖 i.e.: 

𝜆𝑖 = 𝑡̃𝑖 on Γ𝑢 (2.27)  

So, Eq.(2.25) can be written as follows: 

Π(𝑢𝑖 , 𝑢̃𝑖 , 𝑡̃𝑖) = ∫
1

2
𝑡𝑖(𝑥)𝑢𝑖(𝑥)𝑑Γ(𝑥)

Γ

+ ∫ 𝑡̃𝑖(𝑥)(𝑢̃𝑖(𝑥) − 𝑢𝑖(𝑥))𝑑Γ(𝑥)

Γ

− ∫ 𝑡𝑖̅(𝑥)𝑢̃𝑖(𝑥)𝑑Γ(𝑥)

Γ𝑡

− ∫
1

2
𝜎𝑖𝑗,𝑗(𝑦)𝑢𝑖(𝑦)𝑑Ω(𝑦)

Ω

 

(2.28)  

With boundary conditions  

𝑢𝑖 = 𝑢̅𝑖 on Γ𝑢 (2.29)  

So, minimizing Eq.(2.28) the problem is solved. 
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Now to minimize Eq.(2.28) , approximate the displacement and traction in the 

domain and on the boundary as follows: 

In the domain: 

𝑢𝑗(𝑦) = ∑ 𝑈𝑖𝑗
∗ (𝑦, 𝜉𝑘)𝜓𝑖

𝑘=𝑁

𝑘=1

(𝜉𝑘) 
(2.30)  

𝑡𝑗(𝑦) = ∑ 𝑇𝑖𝑗
∗ (𝑦, 𝜉𝑘)𝜓𝑖

𝑘=𝑁

𝑘=1

(𝜉𝑘) 
(2.31)  

On the boundary the same approximation is used as in the direct boundary 

integral equation. 

Substitute by these approximations in Eq.(2.28) the following equation is 

obtained: 

Π(𝑢𝑖 , 𝑢̃𝑖 , 𝑡̃𝑖) =
1

2
{𝜓(𝜉)}𝑇[𝑄(𝑥, 𝜉)]{𝜓(𝜉)}

− {𝑡(𝑥)}𝑇[𝐺𝑖(𝑥, 𝜉)]
𝑇{𝑢(𝑥)} + {𝑡(𝑥)}𝑇[𝐿(𝑥)]{𝑢(𝑥)}

− {𝑢(𝑥)}𝑇{𝑇̅(𝑥)} 

(2.32)  

Where;  

[𝑄(𝑥, 𝜉)]2𝑁×2𝑁 = ∫[𝑈𝑖𝑗
∗ (𝑥, 𝜉)][𝑇𝑖𝑗(𝑥, 𝜉)]

𝑇
𝑑Γ(𝑥)

Γ

 (2.33)  

[𝐺𝑖(𝑥, 𝜉)]2𝑁×2𝑁 = ∫[𝑈𝑖𝑗
∗ (𝑥, 𝜉)][𝜙𝑗(𝑥)]

𝑇
𝑑Γ(𝑥)

Γ

 (2.34)  

[𝐿𝑖𝑗(𝑥)]2𝑁×2𝑁
= ∫[𝜙𝑖(𝑥)][𝜙𝑗(𝑥)]

𝑇
𝑑Γ(𝑥)

Γ

 (2.35)  

{𝑇̅𝑗(𝑥)}2𝑁×2𝑁
= ∫[𝜙𝑗(𝑥)]{𝑡𝑖̅(𝑥)}𝑑Γ(𝑥)

Γ

 (2.36)  

Where, 𝜙𝑖 is a set of relevant shape functions. 
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Minimizing Eq.(2.32) and rearranging, the following system of equations is 

obtained: 

{𝐹(𝑥)} = [𝐾(𝑥, 𝜉)]{𝑢(𝑥)} (2.37)  

Where;  

[𝐾(𝑥, 𝜉)]2𝑁×2𝑁 = [𝑅𝑖𝑗
∗ (𝑥, 𝜉)]

𝑇
[𝑄𝑖𝑗

∗ (𝑥, 𝜉)][𝑅𝑖𝑗
∗ (𝑥, 𝜉)] (2.38)  

[𝑅(𝑥, 𝜉)]2𝑁×2𝑁 = ([𝐺𝑖𝑗
∗ (𝑥, 𝜉)]

𝑇
)
−1
[𝐿(𝑥)] (2.39)  

{𝐹(𝑥)} = {𝑇̅(𝑥)} (2.40)  

And, 

{𝜓(𝜉)}2𝑁×1 = ([𝐺𝑖𝑗
∗ (𝑥, 𝜉)]

𝑇
)
−1
[𝐿(𝑥)]{𝑢(𝑥)} (2.41)  

{𝑡} = [𝐺𝑖𝑗
∗ (𝑥, 𝜉)]

−1
[𝑄𝑖𝑗

∗ (𝑥, 𝜉)] ([𝐺𝑖𝑗
∗ (𝑥, 𝜉)]

𝑇
)
−1
[𝐿(𝑥)]{𝑢(𝑥)} (2.42)  

Where, [𝐾(𝑥, 𝜉)]  represents the stiffness of the domain, which is symmetric, 

unlike the stiffness obtained from the direct or indirect boundary elements 

which is unsymmetric. {𝐹(𝑥)} is the nodal force vector. 

Now on solving Eq.(2.37) the displacement and the nodal force and also the 

traction on the boundary is obtained. 

2.5. Eshelby equivalent inclusion theory 

Eshelby equivalent inclusion theory [16,42] is used to solve problems with 

inhomogeneities Fig.(2.3). In this theory the real problem is replaced by a 

homogeneous problem and at the location of inhomogeneities a prescribed 

strain (eigenstrain 𝜀𝑗𝑘
𝑜 ) is applied to take the effect of the difference in 

properties. The location at which the eigenstrain is applied is called equivalent 

inclusion.  
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According to this theory the disturbance in strain due to the difference in 

properties (which is called constraint strain 𝜀𝑖𝑚
𝐶𝑂) at inclusion number I is 

calculated as follows [16,42]: 

 𝜀𝑖𝑚
𝐶𝑂𝐼 = 𝑆𝑖𝑚𝑗𝑘

𝐼𝐽𝜀𝑗𝑘
𝑜 𝐽 (2.43)  

Where, 𝑆𝑖𝑚𝑗𝑘
𝐼𝐽 is the Eshelby tensor relating the constrain strain at inclusion 

number I with the eigenstrains at the other inclusions around it. Eshelby tensor 

depends on the inclusion geometry and the problem elastic constants. 

To get the eigenstrain, the stresses inside the inhomogeneity and inside the 

equivalent inclusion are equated as follows [15]: 

𝐶′𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙
𝑎𝑝𝑝𝑙𝑖𝑒𝑑

+ 𝜀𝑘𝑙
𝐶𝑂𝐼) = 𝐶𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙

𝑎𝑝𝑝𝑙𝑖𝑒𝑑
+ 𝜀𝑘𝑙

𝐶𝑂𝐼 − 𝜀𝑘𝑙
𝑜 𝐼) (2.44)  

Where, 𝐶′𝑖𝑗𝑘𝑙 is the elasticity tensor for the inhomogeneous part, and 𝜀𝑘𝑙
𝑎𝑝𝑝𝑙𝑖𝑒𝑑

 is 

the strain due to the applied load. 

Substituting Eq.(2.43) into Eq.(2.44) the following relation can be obtained: 

𝜀𝑖𝑗
𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝐼

= −𝑆𝑖𝑗𝑘𝑙
𝐼𝐽𝜀𝑘𝑙

𝑜 𝐽 + (𝐶1 + 𝐶2)𝜀𝑖𝑗
𝑜 𝐼 − 𝐶2𝜀𝑚𝑚

𝑜 𝐼𝛿𝑖𝑗 
(2.45)  

𝐶1 =
𝐴 + (1 + 𝐶)𝐵

𝐵(2𝐴 + 𝐵)
 (2.46)  

𝐶2 =
𝐴 − 𝐶𝐵

𝐵(2𝐴 + 𝐵)
 (2.47)  

𝐵 = 1 −
𝐸𝐼

𝐸
 (2.48)  

    

Fig.(2.3): Inhomogeneity and its equivalent inclusion problem 
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𝐴 = 𝐶 −
𝐸𝐼

𝐸
(

𝜈𝐼

1 − 2𝜈𝐼
) (2.49)  

𝐶 =
𝜈

1 − 2𝜈
 (2.50)  

Where, 𝐸𝐼 and 𝜈𝐼  are the material Young’s modulus and Poisson’s ratio of 

inclusion number I. 

The matrix form of Eq. (2.45) could be written as follows: 

{𝜀𝑎𝑝𝑝𝑙𝑖𝑒𝑑}3𝑁𝑂𝐼×1 = [𝑒𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼{𝜀
𝑜}3𝑁𝑂𝐼×1 (2.51)  

Where, NOI is the number of equivalent inclusions in the problem. 

The constraint displacement and strain from Eshelby theory is as follows: 

𝑢𝑖(𝑥) = ∑ 𝜀𝑗𝑘
𝑜 𝐼 ∫𝜎𝑖𝑗𝑘(𝑥, 𝜉)𝑑Ω𝐼(𝜉)

Ω𝐼

𝐼=𝑁𝑂𝐼

𝐼=1

 (2.52)  

𝜀𝑖𝑚(𝑥) =

{
 
 

 
 ∑ 𝜀𝑗𝑘

𝑜 𝐼 ∫𝑂𝑖𝑗𝑘𝑚(𝑥, 𝜉)𝑑Ω𝐼(𝜉)

Ω𝐼

𝐼=𝑁𝑂𝐼

𝐼=1

𝑥 ≠ 𝜉

1

8(1 − 𝜈)
[(6 − 8𝜐)𝜀𝑖𝑚

𝑜 − (1 − 4𝜐)𝜀𝑙𝑙
𝑜𝛿𝑖𝑚] 𝑥 = 𝜉

 (2.53)  

𝑂𝑖𝑗𝑚𝑘(𝜉, 𝑥) =
1

4𝜋(1 − 𝜈)𝑟2
[2𝜐(𝑟,𝑘𝑟,𝑚𝛿𝑖𝑗 + 𝑟,𝑗𝑟,𝑚𝛿𝑖𝑘 + 𝑟,𝑖𝑟,𝑗𝛿𝑘𝑚

+ 𝑟,𝑖𝑟,𝑘𝛿𝑗𝑚) + 2(1 − 2𝜈)𝑟,𝑖𝑟,𝑚𝛿𝑗𝑘 + 2𝑟,𝑗𝑟,𝑘𝛿𝑖𝑚

− 8𝑟,𝑖𝑟,𝑗𝑟,𝑘𝑟,𝑚

+ (1 − 2𝜈)(𝛿𝑖𝑗𝛿𝑘𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑚 − 𝛿𝑗𝑘𝛿𝑖𝑚)] 

(2.54)  

𝜀𝑗𝑘
𝑜  is assumed here to be constant inside the inclusion. 

2.6. Continuum Damage Mechanics 

Continuum Damage Mechanics CDM is the science which studies the 

deterioration of the material under the action of loads until fracture occurs. 
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Unlike Fracture Mechanics which study the material with the presence of a 

crack. 

In CDM the material deterioration is studied by decreasing the elastic tensor of 

the material by Damage variable (D) which depends on the material behavior. 

In this thesis the damage is considered isotropic, so D is a scalar quantity (D=0 

for undamaged material and 1 for fully damage material). According to the 

CDM the stress strain relation becomes [43]: 

𝜎𝑖𝑗 = (1 − 𝐷)𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (2.55)  

The damage growth is governed by the following activation function [25]: 

𝑓(𝜀∗) = 𝜀∗(𝜀) − 𝜀𝑚𝑎𝑥
∗   (2.56)  

Such that, 𝑓(𝜀∗) ≤ 0 and  𝜀𝑚̇𝑎𝑥
∗ ≥ 0  and, 

𝜀∗ = √〈𝜀1〉
2 + 〈𝜀2〉

2 (2.57)  

where, 𝜀𝑚𝑎𝑥
∗  is the maximum effective strain measured in the medium, 𝜀∗ is the 

effective strain and ( ̇ ) is a time derivative. 𝜀1 and 𝜀2 are the principle strains, 

and 〈𝜀𝑖〉 denotes the positive values of the strain. 
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Fig.(2.4): Different inclusion patterns and the interaction radius.   

The above damage approach is called the local damage approach. To extend 

such an approach to the nonlocal approach (the integral type), a certain variable 

𝑓(𝑋) is replaced by its nonlocal counterpart 𝑓𝑛𝑙(𝑋𝑝) [27]. In this thesis two 

approaches are used for the nonlocal integral type, the first one is averaging the 

strain [25], and the second one is averaging the damage [49]. The averaging is 

done as follows: 

𝑓𝑛𝑙(𝑋𝑝) = ∫α(𝑟)𝑓(𝑋)𝑑S

S

∫α(𝑟)𝑑S

S

⁄  (2.58)  

in which α(𝑟) is the weight function, where it is chosen here to be the bell-

shape function as follows: 

α(𝑟) = {(1 −
𝑟2

𝑅2
)

2

0 ≤ 𝑟 ≤ 𝑅

0 𝑟 > 𝑅

 (2.59)  

where, 𝑋𝑝 is the coordinate of the investigation point, at which the nonlocal 

strain or nonlocal damage is calculated and 𝑋 is the coordinate of any arbitrary 

Intersected 

circular inclusions 

(one diameter) 

Staggered circular 

inclusions (two 

diameters) 

S 
R 

r 

Ω 
Investigation 

points  
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point inside a circle of radius 𝑅 (the interaction radius, which is a material 

property) as given in Fig.(2.4). 

The integration in Eq.(2.36) is approximated as follows:  

𝑓𝑛𝑙(𝑋𝑝) = ∑α(𝑟𝑖)𝑓(𝑋𝑖)

𝑁𝐶

𝑖=0

∑α(𝑟𝑖)

𝑁𝐶

𝑖=0

⁄  (2.60)  

where NC is the number of points inside the circle as shown in Fig.(2.4). 

2.7. Coupling Eshelby theory with DBIEM  

In order to solve a problem with inhomogeneities using the BEM the problem 

domain needs to be discrteized to define different elastic properties. This 

approach makes the BEM losses its main advantage of boundary only 

discretization. In 2008 Hang et.al [19-21] coupled the DBIE Eq.(2.11) and 

Eq.(2.14) with Eshelby equivalent inclusion theory Eq.(2.52) and Eq.(2.53) to 

get the following: 

𝑐𝑖𝑗(𝜉)𝑢𝑗(𝜉) = ∫𝑈𝑖𝑗
∗ (𝜉, 𝑥)𝑡𝑗(x)𝑑Γ(x)

Γ

− ∫𝑇𝑖𝑗
∗ (𝜉, x)𝑢𝑗(x)𝑑Γ(x)

Γ

+ ∑ 𝜀𝑗𝑘
𝑜 (x𝐼) ∫𝜎𝑖𝑗𝑘

∗ (ξ, x𝐼)dΩI(x𝐼)

ΩI

I=𝑁𝑂𝐼

I=1

 

(2.61)  

𝜀𝑖𝑚(𝜉) = ∫𝑈𝑖𝑗𝑚
∗ (𝜉, x)𝑡𝑗(x)𝑑Γ(x)

Γ

− ∫𝑇𝑖𝑗𝑚
∗ (𝜉, x)𝑢𝑗(x)𝑑Γ(x)

Γ

+ 

{
 
 

 
 ∑ 𝜀𝑗𝑘

𝑜 𝐼 ∫𝑂𝑖𝑗𝑘𝑚(𝑥, 𝜉)𝑑Ω𝐼(𝜉)

Ω𝐼

𝐼=𝑁𝑂𝐼

𝐼=1

𝑥 ≠ 𝜉

1

8(1 − 𝜈)
[(6 − 8𝜐)𝜀𝑖𝑚

𝑜 − (1 − 4𝜐)𝜀𝑙𝑙
𝑜𝛿𝑖𝑚] 𝑥 = 𝜉

 

(2.62)  

 

[𝐺𝑖𝑗]{𝑡𝑗} − [𝐻𝑖𝑗]{𝑢𝑗} + [𝐵𝑖𝑗𝑘]{𝜀𝑗𝑘
𝑜 } = {0} (2.63)  
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{𝜀𝑖𝑚} = [𝐺̅𝑖𝑗𝑚]{𝑡𝑗} − [𝐻𝑖𝑗𝑚]{𝑢𝑗} + [𝐵̅𝑖𝑗𝑘𝑚]{𝜀𝑗𝑘
𝑜 } (2.64)  

To Solve Eq.(2.63) the eigenstrain is needed first which can be obtained using   

Eq.(2.45) and Eq.(2.14). These equations can be solved iteratively as in [19-21] 

or directly as in [55]. The advantage of this approach is that the system of 

equations is decreased.   

2.8. Conclusions 

In this chapter a brief introduction to different approaches in the boundary 

element method (Direct, indirect and variational boundary integral equations), 

which will be used in the three coming chapters to solve problems of 

inhomogeneities and damage. Also, Eshelby’s theory is discussed and how it is 

coupled with the direct boundary integral equation to solve problems with 

inhomogeneities. It will be shown in the following chapter how Eshelby theory 

can also be coupled with the indirect BIE to solve problems with 

inhomogeneities.    
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Chapter 3: Indirect BIE with inhomogeneities 

3.1. Introduction  

In this chapter Eshelby equivalent inclusion theory is coupled with the 

FSM, where the advantage of no meshing on the boundary or inside the 

domain is gained. The Eshelby theory is being coupled as a set of particular 

solutions where analytical solutions are employed for circular inclusions 

[23,24,30,42], so there is no domain discretization and all involved 

integrations are carried out analytically and closed form solutions are 

employed. Finally, the solution algorithm is performed using two 

approaches i.e. the direct approach and the iterative approach. 

3.2. Fictitious Stress Method 

Consider a 2D elasticity problem, with N points are placed on the 

boundary (Fig.(3.1)). The distance between these points is defined as the 

point interval; along which the boundary normal and tangential directions 

are defined. The displacements and tractions on the boundary can be 

computed using the fictitious stress method, as follows [12]: 

𝑢𝑠
𝑖 =

𝑃𝑠
𝑗

2𝐺
[(3 − 4𝜈)𝑐𝑜𝑠𝛾𝐹1 − 𝑦̅(𝑠𝑖𝑛𝛾𝐹2 − 𝑐𝑜𝑠𝛾𝐹3)] 

+
𝑃𝑛
𝑗

2𝐺
[(3 − 4𝜈)𝑠𝑖𝑛𝛾𝐹1 − 𝑦̅(𝑐𝑜𝑠𝛾𝐹2 + 𝑠𝑖𝑛𝛾𝐹3)] 

(3.1)  

𝑢𝑛
𝑖 =

𝑃𝑠
𝑗

2𝐺
[−(3 − 4𝜈)𝑠𝑖𝑛𝛾𝐹1 − 𝑦̅(𝑐𝑜𝑠𝛾𝐹2 + 𝑠𝑖𝑛𝛾𝐹3)] 

+
𝑃𝑛
𝑗

2𝐺
[(3 − 4𝜈)𝑐𝑜𝑠𝛾𝐹1 + 𝑦̅(𝑠𝑖𝑛𝛾𝐹2 − 𝑐𝑜𝑠𝛾𝐹3)] 

(3.2)  

𝑡𝑠
𝑖 =

𝑃𝑠
𝑗

2𝐺
[(3 − 4𝜈)𝑐𝑜𝑠𝛾𝐹1 − 𝑦̅(𝑠𝑖𝑛𝛾𝐹2 − 𝑐𝑜𝑠𝛾𝐹3)] 

+
𝑃𝑛
𝑗

2𝐺
[(3 − 4𝜈)𝑠𝑖𝑛𝛾𝐹1 − 𝑦̅(𝑐𝑜𝑠𝛾𝐹2 + 𝑠𝑖𝑛𝛾𝐹3)] 

(3.3)  
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𝑡𝑛
𝑖 =

𝑃𝑠
𝑗

2𝐺
[𝐹2 − 2(1 − 𝜈)(𝑐𝑜𝑠2𝛾𝐹2 + 𝑠𝑖𝑛2𝛾𝐹3)

− 𝑦̅(𝑐𝑜𝑠2𝛾𝐹4 − 𝑠𝑖𝑛2𝛾𝐹5)]

+
𝑃𝑛
𝑗

2𝐺
[𝐹3 − (1 − 2𝜈)(𝑠𝑖𝑛2𝛾𝐹2 − 𝑐𝑜𝑠2𝛾𝐹3)

+ 𝑦̅(𝑠𝑖𝑛2𝛾𝐹4 + 𝑐𝑜𝑠2𝛾𝐹5)] 

(3.4)  

where, (recall Fig.(3.1)) 𝑢𝑠
𝑖  , 𝑢𝑛

𝑖  and 𝑡𝑠
𝑖  , 𝑡𝑛

𝑖  are the displacements and 

tractions at point i in direction 𝑠𝑖 and normal direction 𝑛𝑖.  𝑢𝑠
𝑖  , 𝑢𝑛

𝑖  and 𝑡𝑠
𝑖  , 

𝑡𝑛
𝑖  are due to fictitious stress 𝑃𝑠

𝑗 and 𝑃𝑛
𝑗 distributed on the interval at point j 

in the direction 𝑠𝑗 and normal direction 𝑛𝑗 . 𝑦̅ is the y-coordinate of point i 

with respect to point j mesured in the local direction of the interval at point 

j, and 𝛾 = 𝛽𝑖 − 𝛽𝑗, where, 𝛽𝑖 and 𝛽𝑗 are the inclination angle of 𝑠𝑖 and 𝑠𝑗to 

the horizontal. The terms 𝐹1 to 𝐹5 are given as follows [12]:  

𝐹1 = −𝑀 [𝑦̅ (𝑡𝑎𝑛−1 (
𝑦̅

𝑥̅ − 𝑎
) − 𝑡𝑎𝑛−1 (

𝑦̅

𝑥̅ + 𝑎
)) 

−
1

2
(𝑥̅ − 𝑎)𝑙𝑛((𝑥̅ − 𝑎)2 + 𝑦̅2) +

1

2
(𝑥̅ + 𝑎)𝑙𝑛((𝑥̅ + 𝑎)2 + 𝑦̅2)] 

(3.5)  

𝐹2 =
1

2
𝑀[𝑙𝑛((𝑥̅ − 𝑎)2 + 𝑦̅2) − (𝑥̅ + 𝑎)𝑙𝑛((𝑥̅ + 𝑎)2 + 𝑦̅2)] (3.6)  

𝐹3 = −𝑀 [𝑡𝑎𝑛−1 (
𝑦̅

𝑥̅ − 𝑎
) − 𝑡𝑎𝑛−1 (

𝑦̅

𝑥̅ + 𝑎
)] (3.7)  

𝐹4 = 𝑀 [
𝑦̅

(𝑥̅ − 𝑎)2 + 𝑦̅2
−

𝑦̅

(𝑥̅ + 𝑎)2 + 𝑦̅2
] (3.8)  

𝐹5 = 𝑀 [
𝑥̅ − 𝑎

(𝑥̅ − 𝑎)2 + 𝑦̅2
−

𝑥̅ + 𝑎

(𝑥̅ + 𝑎)2 + 𝑦̅2
] (3.9)  

     where, 

𝑀 =
1

4𝜋(1 − 𝜈)
 (3.10)  
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In which, 𝑥̅ is the x-coordinate of point i with respect to the point j mesured 

in the local direction of the interval at point j, and a is half the length of the 

interval at point j. On suitable substitutions from Eqs.(3.5-3.10) into 

Eqs.(3.1-3.4), the boundary displacements and tractions can be rewritten as 

[12]: 

𝑢𝑠
𝑖 =∑𝐵𝑠𝑠

𝑖𝑗𝑃𝑠
𝑗

𝑁

𝑗=1

+∑𝐵𝑠𝑛
𝑖𝑗𝑃𝑛

𝑗

𝑁

𝑗=1

 (3.11)  

𝑢𝑛
𝑖 =∑𝐵𝑛𝑠

𝑖𝑗𝑃𝑠
𝑗

𝑁

𝑗=1

+∑𝐵𝑛𝑛
𝑖𝑗𝑃𝑛

𝑗

𝑁

𝑗=1

 (3.12)  

𝑡𝑠
𝑖 =∑𝐴𝑠𝑠

𝑖𝑗𝑃𝑠
𝑗

𝑁

𝑗=1

+∑𝐴𝑠𝑛
𝑖𝑗𝑃𝑛

𝑗

𝑁

𝑗=1

 (3.13)  

𝑡𝑛
𝑖 =∑𝐴𝑛𝑠

𝑖𝑗𝑃𝑠
𝑗

𝑁

𝑗=1

+∑𝐴𝑛𝑛
𝑖𝑗𝑃𝑛

𝑗

𝑁

𝑗=1

 (3.14)  

where, 𝐵𝑠𝑠
𝑖𝑗, 𝐵𝑠𝑛

𝑖𝑗, 𝐵𝑛𝑠
𝑖𝑗 and 𝐵𝑛𝑛

𝑖𝑗 are the influence matrices obtained from 

Eqs.(3.1,3.2) for displacements, and 𝐴𝑠𝑠
𝑖𝑗 , 𝐴𝑠𝑛

𝑖𝑗, 𝐴𝑛𝑠
𝑖𝑗 and 𝐴𝑛𝑛

𝑖𝑗 are the 

influence matrices obtained from Eqs.(3.3,3.4) for tractions. 

 

Fig.(3.1): A general problem with FSM points and associated intervals. 

𝑦̅ 

𝑥̅ 

𝑗 

𝑛𝑗 

𝑠𝑗 
𝛽𝑗 

𝛽𝑖 𝑖 

𝑠𝑖 

𝑛𝑖 

𝑋 

𝑌 

FSM points 

Point 

interval  



 

36 

 

The matrix form of Eqs.(3.11-3.14) could be written as follows: 

{
{𝑢}2𝑁×1
{𝑡}2𝑁×1

} = [
[𝐵]2𝑁×2𝑁
[𝐴]2𝑁×2𝑁

] {𝑃}2𝑁×1 (3.15)  

Solving Eq.(3.15), the fictitious stress {𝑃} is computed, then one can substitute 

into Eqs.(3.11-3.14) to obtain the unknown boundary displacements and 

tractions. Also, internal displacements can be obtained from Eqs.(3.11,3.12), 

and the internal strains or stresses can be obtained by superposition after 

differentiation of Eqs.(3.11,3.12) as demonstrated in section 3.6. 

3.3. The proposed FSM with inhomogeneities 

In this chapter, Eshelby’s equivalent inclusion theory is coupled with the 

FSM to model the inhomogeneity problems. The problem is solved by 

dividing the solution into complementary and particular solutions 

(Fig.(3.2)). The particular solution is obtained from Eshelby’s theory in 

infinite domain. The complementary solution is computed as a later step 

using the FSM after modifying the relevant boundary conditions. Therefore, 

the problem final displacements and tractions could be written as follows: 

𝑢𝑚
𝑖 = 𝑢𝑚

𝑐 𝑖 + 𝑢𝑚
𝑝 𝑖

 (3.16)  

𝑡𝑚
𝑖 = 𝑡𝑚

𝑐 𝑖 + 𝑡𝑚
𝑝 𝑖

 (3.17)  

where, 𝑢𝑚
𝑐 𝑖 and 𝑢𝑚

𝑝 𝑖
 are the complementary and the particular solutions of 

displacements at point i in x and y directions, respectively. Also,  𝑡𝑚
𝑐 𝑖 and 

𝑡𝑚
𝑝 𝑖

 are the complementary and the particular solutions of tractions at point i 

in x and y directions, respectively. The particular solutions could be solved 

first as follows (assuming the eigenstrain to be constant inside the equivalent 

inclusion): 

𝑢𝑚
𝑝 𝑖
=∑ ∫𝜎𝑚𝑞𝑙𝑑Ω

Ω𝑗

𝜀𝑞𝑙
𝑜 𝑗

𝑁𝑂𝐼

𝑗=1

 (3.18)  
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𝑡𝑚
𝑝 𝑖
=∑ ∫𝜎𝑚𝑘𝑞𝑙𝑛𝑘𝑑Ω

Ω𝑗

𝜀𝑞𝑙
𝑜 𝑗

𝑁𝑂𝐼

𝑗=1

 (3.19)  

where, 𝜎𝑖𝑗𝑘 and 𝜎𝑖𝑗𝑘𝑙 are defined in chapter 2. Without losing the generality 

in this thesis, the equivalent inclusion shape is taken in this work to be 

circular. The integrals in Eqs. (3.18 and 3.19) are computed as follows: 

𝑢𝑚
𝑝 𝑖
=∑𝑄𝑚𝑞𝑙

𝑖𝑗
𝜀𝑞𝑙
𝑜 𝑗

𝑁𝑂𝐼

𝑗=1

 (3.20)  

𝑡𝑚
𝑝 𝑖
=∑𝑆𝑚̅𝑘𝑞𝑙

𝑖𝑗
𝑛𝑘𝜀𝑞𝑙

𝑜 𝑗

𝑁𝑂𝐼

𝑗=1

 (3.21)  

The expressions of 𝑄𝑚𝑞𝑙
𝑖𝑗

 and 𝑆𝑚̅𝑘𝑞𝑙
𝑖𝑗

 are derived in analytical form 

[23,24,30,42] and is listed in Appendix A, besides Eshelby’s tensor. 

Combining Eqs. (3.11-3.14) and Eqs. (3.20 and 3.21) using Eqs. (3.16 and 

3.17), the total displacements and total tractions could be written as follows: 

𝑢𝑚
𝑖 = (𝑢𝑠

𝑐𝑖cos(90(𝑚 − 1) − 𝛽𝑖) + 𝑢𝑛
𝑐 𝑖sin(90(𝑚 − 1) − 𝛽𝑖))

+∑𝑄𝑚𝑞𝑙
𝑖𝑗
𝜀𝑞𝑙
𝑜 𝑗

𝑁𝑂𝐼

𝑗=1

 

(3.22)  

𝑡𝑚
𝑖 = (𝑡𝑠

𝑐𝑖cos(90(𝑚 − 1) − 𝛽𝑖) + 𝑡𝑛
𝑐𝑖sin(90(𝑚 − 1) − 𝛽𝑖))

+∑𝑅𝑚𝑞𝑙
𝑖𝑗
𝜀𝑞𝑙
𝑜 𝑗

𝑁𝑂𝐼

𝑗=1

 

(3.23)  

It should be noticed that Eqs.(3.11-3.14) are defined in the local direction of 

the interval at point i, therefore, Eqs.(3.11-3.14) must be multiplied by the 

transformation matrix for each interval to transform it in the global 

directions be for combining with Eqs. (3.20 and 3.21). 
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= 

                                  

Fig.(3.2): The solution concept of dividing the problem into complementary and particular problems. 
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Equations (3.22 and 3.23) could be rewritten in a matrix form as follows: 

{
{𝑢}2𝑁×1
{𝑡}2𝑁×1

} = [
[𝐵̅]2𝑁×2𝑁 [𝑄]2𝑁×3𝑁𝑂𝐼
[𝐴̅]2𝑁×2𝑁 [𝑅]2𝑁×3𝑁𝑂𝐼

] {
{𝑃}2𝑁×1
{𝜀𝑜}3𝑁𝑂𝐼×1

} (3.24)  

[𝐵̅] and [𝐴̅] are the same as [𝐵] and [𝐴] but after multiplying the rows 

corresponding to each interval by the transformation matrix [𝑇𝑖], in which: 

[𝑇𝑖] = [
cos𝛽𝑖 −sin𝛽𝑖

sin𝛽𝑖 cos𝛽𝑖
] (3.25)  

In order to solve Eq. (3.24) the eigenstrain should be obtained. This is carried 

out using Eq. (2.46), which needs first to obtain the applied strain. The applied 

strain at the inclusion center is obtained as follows: 

𝜀𝑞𝑙
𝑎𝑝𝑝𝑙𝑖𝑒𝑑

=
1

𝐸
[(1 + 𝜈)𝜎𝑞𝑙

𝑎𝑝𝑝𝑙𝑖𝑒𝑑
− 𝜈(1 + 𝜈)𝜎𝑘𝑘

𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝛿𝑞𝑙] 

(3.26)  

Where, the stress at the internal point i is calculated as follows [12]: 

𝜎𝑥𝑥
𝑖 = 𝑃𝑠

𝑗[𝐹2 + 2(1 − 𝜈)(cos2𝛽
𝑗𝐹2 − sin2𝛽

𝑗𝐹3)

+ 𝑦̅(cos2𝛽𝑗𝐹4 + sin2𝛽
𝑗𝐹5)] 

+𝑃𝑛
𝑗[𝐹3 − (1 − 2𝜈)(sin2𝛽

𝑗𝐹2 + cos2𝛽
𝑗𝐹3)

+ 𝑦̅(sin2𝛽𝑗𝐹4 − cos2𝛽
𝑗𝐹5)] 

(3.27)  

𝜎𝑥𝑦
𝑖 = 𝑃𝑠

𝑗[2(1 − 𝜈)(sin2𝛽𝑗𝐹2 + cos2𝛽
𝑗𝐹3)

+ 𝑦̅(sin2𝛽𝑗𝐹4 − cos2𝛽
𝑗𝐹5)] 

+𝑃𝑛
𝑗[(1 − 2𝜈)(cos2𝛽𝑗𝐹2 − sin2𝛽

𝑗𝐹3) − 𝑦̅(cos2𝛽
𝑗𝐹4 + sin2𝛽

𝑗𝐹5)] 

(3.28)  

𝜎𝑦𝑦
𝑖 = 𝑃𝑠

𝑗[𝐹2 − 2(1 − 𝜈)(cos2𝛽
𝑗𝐹2 − sin2𝛽

𝑗𝐹3)

− 𝑦̅(cos2𝛽𝑗𝐹4 + sin2𝛽
𝑗𝐹5)] 

+𝑃𝑛
𝑗[𝐹3 + (1 − 2𝜈)(sin2𝛽

𝑗𝐹2 + cos2𝛽
𝑗𝐹3)

− 𝑦̅(sin2𝛽𝑗𝐹4 − cos2𝛽
𝑗𝐹5)] 

(3.29)  
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After substituting Eqs.(3.27-3.29) into Eq.(3.26), the latter system can be 

rewritten in a matrix form as follows : 

{𝜀𝑎𝑝𝑝𝑙𝑖𝑒𝑑}3𝑁𝑂𝐼×1 = [𝑍]3𝑁𝑂𝐼×2𝑁{𝑃}2𝑁×1 (3.30)  

In order to solve the inhomogeneity problem, Eq. (3.24) together with Eq. (3.30) 

and Eq. (2.52) is needed to be solved. In this chapter, two approaches are 

developed, i.e. the direct approach and the iterative approach. 

3.4. The proposed iterative approach 

In this approach the solution procedure is carried out in iterative way as 

follows: 

1. Solve Eq. (3.15) to compute the fictitious stresses. 

2. From Eq.(3.30), compute the strain at the center of the inhomogeneities. 

3. From Eq.(2.51), compute the eigenstrain. 

4. Substitute the computed eigenstrain into Eq.(3.24) then compute the new 

fictitious stress. 

5. From Eq.(3.30), compute the updated applied strain at the equivalent 

inclusion center. 

6. Repeat from step (3) and calculate the eigenstrain until the difference 

between two consecutive values of the eigenstrain is less than a prescribed 

tolerance as follows: 

{𝐸𝑟𝑟𝑜𝑟} = {𝜀𝑜}𝑖 − {𝜀𝑜}𝑖−1 (3.31)  

𝑚𝑎𝑥{𝐸𝑟𝑟𝑜𝑟} < 𝑡𝑜𝑙, where (3.32)  

i is the iteration number     

Figure (3.3) summarizes the former steps in a flow diagram. 

 



 

41 

 

 

Fig.(3.3): A flow diagram of the proposed iterative approach. 
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the internal strain 

Start 

End 

Yes 

No 



 

42 

 

3.5. The proposed direct approach 

In this approach the eigenstrain values are obtained directly without iterations. 

From Eq.(2.45), and Eq.(3.26) the following relationships between the fictitious 

stress and the eigenstrain are obtained: 

−𝑆𝑖𝑗𝑘𝑙
𝐼𝐽𝜀𝑘𝑙

𝑜 𝐽 + (𝐶1 + 𝐶2)𝜀𝑖𝑗
𝑜 𝐼 − 𝐶2𝜀𝑚𝑚

𝑜 𝐼𝛿𝑖𝑗

=
1

𝐸
[(1 + 𝜈)𝜎𝑖𝑗

𝑎𝑝𝑝𝑙𝑖𝑒𝑑
− 𝜈(1 + 𝜈)𝜎𝑚𝑚

𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝛿𝑖𝑗] 

(3.33)  

Eq.(3.33) is then rewritten in a matrix form as follows: 

[𝑒𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼{𝜀
𝑜}3𝑁𝑂𝐼×1 = [𝑍]3𝑁𝑂𝐼×2𝑁{𝑃}2𝑁×1 (3.34)  

From Eq.(3.24) and Eq.(3.34) the following matrix form could be written: 

{

{𝑢}2𝑁×1
{𝑡}2𝑁×1
{0}3𝑁𝑂𝐼×1

} = [

[𝐵̅]2𝑁×2𝑁 [𝑄]2𝑁×3𝑁𝑂𝐼
[𝐴̅]2𝑁×2𝑁 [𝑅]2𝑁×3𝑁𝑂𝐼
[𝑍]3𝑁𝑂𝐼×2𝑁 −[𝑒𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼

] {
{𝑃}

{𝜀𝑜}
} (3.35)  

 Solving Eq.(3.35), the fictitious stress and also the eigenstrain are obtained. 

3.6. Post processing 

After solving the problem by either of the above two approaches, substituting in 

Eqs.(3.22 and 3.23) the unknown displacements and tractions at the boundary 

are obtained.  

The strain at the inclusion center could be computed as follows: 

𝜀𝑞𝑙
𝑖 = 𝜀𝑞𝑙

𝑐 𝑖 + 𝜀𝑞𝑙
𝑝 𝑖

 (3.36)  

With the following particular part: 

𝜀𝑞𝑙
𝑝 𝑖
=∑𝑆𝑞𝑙𝑘𝑚

𝑖𝑗
𝜀𝑘𝑚
𝑜 𝑗

𝑁𝑂𝐼

𝑗=1

 (3.37)  
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and the corresponding complementary part: 

𝜀𝑞𝑙
𝑐 =

1

𝐸
[(1 + 𝜈)𝜎𝑞𝑙

𝑐 − 𝜈(1 + 𝜈)𝜎𝑘𝑘
𝑐 𝛿𝑞𝑙] 

(3.38)  

In which, 𝜎𝑞𝑙
𝑐  is the complementary part of stress from Eqs. (3.27-3.29). 

3.7. Numerical examples 

In this section five numerical examples are solved in order to demonstrate the 

accuracy and validity of the proposed formulations. FSM points are placed on the 

boundary of the problem and inclusion points are placed at the inhomogeneity 

center i.e. no boundary or domain discretization is required. For the first three 

examples direct approach is only used, and in the last two examples both the 

iterative and direct approaches are used for the purpose of comparison. 

3.7.1.Kirsch problem 

In this example, the well-known Kirsch problem (large plate with small circular 

void of radius R) as shown in Fig.(3.4) is solved. The analytical solution for 

stresses is given in Appendix C. The material properties used is E=1 N/m2 and 

v=0.3. 

 

Fig.(3.4): Kirsch problem example 3.7.1 
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The problem is solved using 12,18,36 and 76 FSM points and one point at the void 

center. Figures (3.5,3.6) demonstrate the results of the stresses in x and y 

directions, respectively. It can be seen that good agreement between the present 

formulation solutions and the analytical solutions are obtained. 

 

Fig.(3.5): Stresses in the x-direction in example 3.7.1 

 

Fig.(3.6): Stress in the y-direction in example 3.7.1 
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3.7.2.Square plate with single inhomogeneity 

The square plate shown in Fig.(3.7) is considered in this example. The plate is 

solved with different locations of inhomogeneity as shown in Fig.(3.7). Wu and 

Yin [61] previously solved this problem using the direct boundary element 

method, where quadratic boundary elements were used, and quadratic eigenstrain 

approximation was assumed. The material properties of the matrix are E=106 

N/m2 and v=0.25. Stiff and soft inhomogeneity are considered. The material 

properties of the stiff are E=2×106 N/m2 and v=0.25 and for the soft one are 

E=105 N/m2 and v=0.25. The problem is solved under vertical load t=104 N/m. 

The problem is discretized using different number of FSM points 20, 52, 100 and 

200 (the points are uniformly distributed along the four sides). Cases (1) and (2) 

are solved with soft inhomogeneity. The stress 𝜎𝑦𝑦 along the vertical dashed line 

is demonstrated in Figs.(3.8) for case(1) and stresses 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are 

demonstrated in Figs.(3.9,3.10) for case(2). In these figures 𝜎𝑦𝑦
𝐻  denotes the stress 

in the homogeneous case.  

Case (2) is solved again with stiff inhomogeneity. The stresses 𝜎𝑥𝑥 and 𝜎𝑦𝑦 along 

the vertical dashed line are demonstrated in Figs.(3.11,3.12). It is clear that there 

  
Case(1) Case(2) 

Fig.(3.7): Square plate with single inhomogeneity in example 3.7.2 
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is a good agreement of the present formulation results to those of reference [61] 

although in ref. [61] 200 quadratic boundary elements were used. It is clear from 

the figures that in case of soft inhomogeneity when it is away from the boundary, 

only 52 points is enough to capture reasonable accuracy but when the 

inhomogeneity is near the boundary more points should be used (100 points). In 

case of stiff inhomogeneity, the distance from the boundary has less influence 

than that of the soft one.   

 

 

 

Fig.(3.8): Stress in the y-direction in example 3.7.2, case(1) (soft 

inhomogeneity). 
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Fig.(3.9): Stress in the x-direction in example 3.7.2, case(2) (soft 

inhomogeneity). 

 

Fig.(3.10): Stress in the y-direction for example 3.7.2, case(2) (soft 

inhomogeneity). 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10

s
xx

/s
yy

H

y/R

REF.[4]

Present (20 points)

Present (52 points)

Present (100 points)

Present (200 points)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

s
yy

/s
yy

H

y/R

REF.[4]

Present (20 points)

Present (52 points)

Present (100 points)

Present (200 points)

 

C
en

te
r 

li
n
e 

o
f 

in
h
o
m

o
g
en

ei
ty

 
C

en
te

r 
li

n
e 

o
f 

in
h
o
m

o
g
en

ei
ty

 

[61] 

[61] 



 

48 

 

 

 

Fig.(3.11): Stress in the x-direction for example 3.7.2, case(2) (stiff 

inhomogeneity). 

 

Fig.(3.12): Stress in the y-direction for example 3.7.2, case(2) (stiff 

inhomogeneity). 
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3.7.3.Square plate with two inhomogeneities 

The square plate in example 3.7.2 is resolved herein with two inhomogeneities. 

These two inhomogeneities have the same radius as shown in Fig.(3.13) and has 

different radii as shown in Fig.(3.14). 

  
Case(1) Case(2) 

Fig.(3.13): Square plate with two equal diameter inhomogeneities in example 

3.7.3. 

  
Case(3) Case(4) 

Fig.(3.14): Square plate with two unequal diameter inhomogeneities in 

example 3.7.3. 
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The same FSM points distributions in example 3.7.2 is reused herein. The problem 

is solved with the stiff inhomogeneity property, and the results are compared with 

those solved by Wu and Yin [61] using the DBIEM.  Figures (3.15-3.26) 

demonstrate the stresses 𝜎𝑥𝑥 and 𝜎𝑦𝑦 for cases 1, 2, 3 and 4 (recall figures 3.13 and 

3.14 for case definitions). It is clear from the figures that in case of equal diameter 

inhomogeneities, only 52 points is enough to capture good accuracy. In case of 

different diameters inhomogeneities, more points are needed (100 points) to reach 

a reasonable accuracy. 

 

Fig.(3.15): Stress in the x-direction along the vertical dashed line (case 1) in example 

3.7.3. 
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Fig.(3.16): Stress in the y-direction along the vertical dashed line (case 1) in example 

3.7.3. 

 

Fig.(3.17): Stress in the x-direction along the horizontal dashed line (case 1) 

in example 3.7.3. 
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Fig.(3.18): Stress in the y-direction along the horizontal dashed line (case 1) 

in example 3.7.3. 

 

Fig.(3.19): Stress in the x-direction along the vertical dashed line (case 2) in 

example 3.7.3. 
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Fig.(3.20): Stress in the y-direction along the vertical dashed line (case 2) in 

example 3.7.3. 

 

Fig.(3.21): Stress in the x-direction along the vertical dashed line (case 

3) in example 3.7.3. 
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Fig.(3.22): Stress in the y-direction along the vertical dashed line (case 3) in 

example 3.7.3. 

 

Fig.(3.23): Stress in the x-direction along the horizontal dashed line 

(case 3) in example 3.7.3. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

s
yy

/s
yy

H

y/R

REF.[4]

Present (20 points)

Present (52 points)

Present (100 points)

Present (200 points)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 -4 -3 -2 -1 0 1 2 3 4 5

s
xx

/s
yy

H

x/R

REF.[4]

Present (20 points)

Present (52 points)

Present (100 points)

Present (200 points)

C
en

te
r 

li
n
e 

o
f 

in
h
o
m

o
g
en

ei
ty

 

C
en

te
r 

li
n
e 

o
f 

in
h
o
m

o
g
en

ei
ty

 

Center of inhomogeneity 

[61] 

[61] 



 

55 

 

 

 

 

Fig.(3.24): Stress in the y-direction along the horizontal dashed line (case 3) 

in example 3.7.3. 

 

Fig.(3.25): Stress in the x-direction along the vertical dashed line (case 4) in 

example 3.7.3. 
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Fig.(3.26): Stress in the y-direction along the vertical dashed line (case 4) in 

example 3.7.3. 
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3.7.4.Tapered cantilever with voids 

The tapered cantilever with voids shown in Fig.(3.27), is considered herein to test 

the ability of the proposed formulation to model several voids as inhomogeneities. 

In this example the present formulation results are compared to results of the 

FEM. Also, the two solution approaches (direct and iterative) are considered. The 

used material properties are E=106 N/m2 and v=0.25. 

Two sets of FSM points are used to simulate the problem, 391 and 782 FSM points, along 

the boundary of the problem (Fig.(3.28)). In the present analysis voids are treated as 

an equivalent inclusion with E=0. The problem is also solved also using FEM with 

two discretizations 932 and 4045 four-noded quadratic elements as shown in 

Fig.(3.29).  

 

Fig.(3.27): The tapered cantilever in example 3.8. 

  

Fig.(3.28): The FSM points distribution in example 3.8. 
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Fig.(3.29): The used FEM discretization in example 3.8. 
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Figures (3.30-3.32) demonstrate the stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑥𝑦 at section A-A 

(recall Fig.(3.27)) for both approaches (direct and iterative) compared to that of 

the FEM. Excellent agreements between results are observed. The deformed shape 

is demonstrated in Fig.(3.33) compared to that of the FEM. 

 

 

Fig.(3.30): Stresses in x-direction along section A-A in example 3.8. 

 

Fig.(3.31): Stresses in y-direction along section A-A for example 3.8. 
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Fig.(3.32): Shear Stresses along section A-A for example 3.8. 
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Fig.(3.33): The deformed shape in example 3.8. 
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3.7.5.Bar with inhomogeneities 

The bar containing array of inhomogeneities shown in Fig.(3.34) is considered in 

this example. The purpose of this example is to compare the difference in 

computational time between the direct approach and iterative approach with 

respect to that of the FEM. The bar contains 1729 circular inhomogeneities. The 

material properties of the matrix are Eo=106 N/m2 and v=0, and for the 

inhomogeneities is E=αEo, where α takes values between 0 to 0.8.   

The problem is solved using the present formulation using 240 FSM points (100 

points on the long sides and 20 points in the short ones). Also, it is solved using 

the FEM using 256000 four-noded quadratic finite elements (FE) for sake of 

comparison.  Figure (3.35) demonstrates the used FE mesh for the shown control 

volume in Fig.(3.34). It has to be noted that in case of voids (α=0), the number of 

the used FE is decreased to 145344 elements.    

 

Fig.(3.34): The bar in example 3.9. 
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Figure (3.36) demonstrates the bar tip displacement for different α cases for both 

direct and iterative approaches together with the corresponding FEM results. 

 

Fig.(3.35): The FE discretization of the control volume in example 3.9. 

  

 

Fig.(3.36): The bar tip displacement for example 3.9. 
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It is clear form Fig.(3.36) that the results of the present formulation agree well 

with the results of the FEM. Figure (3.37), demonstrates the elapsed time of 

calculation. It has to be noted that such values are computed using Intel(R) 

Core(TM) i7-2630QM CPU@ 2.00 GHz computer.  

The shown results of the FEM are obtained using commercial package with GPU 

computing technology. It can be seen that the results of the present formulation 

(which do not employ parallel computing) is comparable to the FEM. Therefore, 

considering the present formulation with GPU or multicore will improve the 

elapsed time dramatically.     

 

 

  

 

Fig.(3.37): Elapsed time of computation in example 3.9. 
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3.8. Conclusions 

In this chapter, the FSM as a meshless technique is coupled with the Eshelby’s 

equivalent inclusion theory to model the inhomogeneity problem. Here, no domain 

discretization was needed as the analytical solutions for circular inclusions were 

presented. Also, only FSM points were distributed on the boundary to solve the 

problem. Although constant distribution of sources was used and also constant 

eigenstrain was assumed in the equivalent inclusion, the results demonstrated good 

agreement with those of analytical solutions, the DBIEM and the FEM as 

demonstrated in the numerical examples (Sec.3.7). Two alternative techniques 

were presented for the solution, i.e. direct and iterative. It was demonstrated that 

the computation time of the present formulation without parallel computing is 

comparable to that of the FEM with GPU computational core. This concludes that 

implementing parallel computing to the present formulation will speed it up 

dramatically making it positioned for practical applications in materials. 
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Chapter 4: Damage simulation in Direct BIE 

4.1. Introduction 

In this chapter a new explicit boundary element modeling for the nonlocal 

damage is introduced. Despite the damage occurred inside the domain, the 

problem boundary is only discretized. The change in the material properties 

due to damage is introduced by coupling Eshelby’s equivalent inclusion theory 

[16,19,20,42] with the direct boundary element equations. At any arbitrary 

point when the internal strain exceeds the threshold strain, an equivalent 

inclusion is inserted with a prescribed eigenstrain to model the damaged 

material property due to damage level, making the damage be represented 

explicitly. A finite-element like stiffness matrix is formulated from the 

proposed coupled integral equations. Such a stiffness is obtained in a 

condensed form on the problem boundary directly. The new system of 

equations is nonlinear as material properties are changed with the problem 

deformation. This system is solved using the load control secant algorithm 

[48]. It has to be noted that, in the present formulation, no prior knowledge of 

the damage locations is required. Some examples are solved to verify the 

proposed formulation. Also, a parametric study on the parameters affecting the 

results (number of boundary elements, inclusion diameter, inclusion pattern, 

residual tolerance and maximum number of iterations) is done. 

4.2. Boundary integral equation formulation  

The displacement boundary integral equation for 2D elasticity containing (NOI) 

non-homogeneities or equivalent inclusions (see Fig.(4.1)) is [19,20]: 
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𝑐𝑖𝑗(𝜉)𝑢𝑗(𝜉) = ∫𝑈𝑖𝑗
∗ (𝜉, 𝑥)𝑡𝑗(x)𝑑Γ(x)

Γ

− ∫𝑇𝑖𝑗
∗ (𝜉, x)𝑢𝑗(x)𝑑Γ(x)

Γ

+ 

∑ 𝜀𝑗𝑘
𝑜 (x𝐼) ∫𝜎𝑖𝑗𝑘

∗ (ξ, x𝐼)dΩI(x𝐼)

ΩI

I=𝑁𝑂𝐼

I=1

 

(4.1)  

In this chapter, the introduced circular inclusions are considered to be small in 

size, hence the domain integral in Eq. (4.1) is computed as follows: 

∑ 𝜀𝑗𝑘
𝑜 (x𝐼) ∫𝜎𝑖𝑗𝑘

∗ (ξ, x𝐼)dΩI(x𝐼)

ΩI

𝐼=𝑁𝑂𝐼

𝐼=1

= ∑ 𝜀𝑗𝑘
𝑜 (x𝐼)𝜎𝑖𝑗𝑘

∗ (ξ, x𝐼)A𝐼

𝐼=𝑁𝑂𝐼

𝐼=1

 (4.2)  

Where, A𝐼  is the area of inclusion number I. 

The boundary integral equation for the strains as in chapter 2:  

𝜀𝑖𝑚(𝜉) = ∫𝑈𝑖𝑗𝑚
∗ (𝜉, x)𝑡𝑗(x)𝑑Γ(x)

Γ

− ∫𝑇𝑖𝑗𝑚
∗ (𝜉, x)𝑢𝑗(x)𝑑Γ(x)

Γ

+ 𝑓𝑖𝑚(𝜉) (4.3)  

The new kernels 𝑈𝑖𝑗𝑚
∗  and 𝑇𝑖𝑗𝑚

∗  are as given in chapter 2. When the strain 𝜀𝑖𝑚(𝜉) is 

calculated outside the inclusion i.e. 𝜉 ∉ ΩI, 𝑓𝑖𝑚(𝜉) could be computed as follows:   

𝑓𝑖𝑚(𝜉) = ∑ 𝜀𝑗𝑘
𝑜 (x𝐼) ∫𝑂𝑖𝑚𝑗𝑘

∗ (ξ, x)dΩI(x)

ΩI

𝐼=𝑁𝑂𝐼

𝐼=1

 (4.4)  

The expression of the new kernel 𝑂𝑖𝑚𝑗𝑘
∗ (ξ, x) is also as given in chapter 2. Similar 

to Eq. (4.1) the domain integral in Eq. (4.4) is computed as follows: 

𝑓𝑖𝑚(𝜉) = ∑ 𝜀𝑗𝑘
𝑜 (x𝐼)𝑂𝑖𝑚𝑗𝑘

∗ (ξ, x)A𝐼

𝐼=𝑁𝑂𝐼

𝐼=1

 (4.5)  
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On the other hand, when the strain 𝜀𝑖𝑚(𝜉) is calculated at the center of the 

inclusion i.e. (𝜉 ∈ ΩI), the term 𝑓𝑖𝑚(𝜉) could be computed as follows [7]:  

𝑓𝑖𝑚(𝜉) =
1

8(1 − 𝜈)
[(6 − 8𝜐)𝜀𝑖𝑚

𝑜 −(1 − 4𝜐)𝜀𝑙𝑙
𝑜𝛿𝑖𝑚] (4.6)  

Where, 𝜈 and 𝛿𝑖𝑚 are Poisson’s ratio of the domain and the Kronecker delta 

symbol, respectively. 

For the matrix [𝑒𝑘] (see Eq.(2.52)) it will be approximated by eliminating the 

inclusion-inclusion interaction. 

[𝑒𝑘]3×3 is defined for one inclusion as follows: 

[𝑒𝑘] = [

𝐶1 − 𝑆1111 −2𝑆1112 −𝐶2 − 𝑆1122

−𝑆1211
1

𝐵
− 2𝑆1212 −𝑆1222

−𝐶1 − 𝑆2211 −2𝑆2212 𝐶2−𝑆2222

] (4.7)  

in which, C1, C2, B, A and C are as given in chapter 2 Eqs.(2.47-2.51) 

4.3. The proposed nonlinear matrix equations  

The basic idea of this chapter is to represent the domain stiffness degradation 

during loading by inserting virtual inclusions at damaged places. Then the non-

homogeneous problem is converted to homogeneous one via Eshelby’s 

eigenstrains. These eigenstrain values are varying during loading resulting in a 

nonlinear behavior of equations. 

In this section the BIE (recall section 4.2) is rewritten in a form to facilitate 

applying the proposed idea. The discretization is carried out on the problem 

boundary, the domain is covered by investigation points (see Fig.(4.1)) at which 

the strain is calculated and checked to decide whether the material is damaged or  
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Fig.(4.1): The actual and the discretized problems. 
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not. If an investigation point is damaged, a small virtual circular inclusion is 

inserted. 

 The problem is discretized into N boundary nodes, NE boundary elements 

(without losing the generality, quadratic boundary elements are used). At a certain 

damage level with a number of inclusions indicated as NOI, Eq. (4.1) could be 

rewritten in a matrix form as follows: 

[𝐺𝑖𝑗(𝜉, x)]2𝑁×6𝑁𝐸
{𝑡𝑗(x)}6𝑁𝐸×1

− [𝐻𝑖𝑗(𝜉, x)]2𝑁×2𝑁
{𝑢𝑗(x)}2𝑁×1

+ [𝐵𝑖𝑗𝑘(𝜉, x)]2𝑁×3𝑁𝑂𝐼
{𝜀𝑗𝑘
𝑜 }

3𝑁𝑂𝐼×1
= {0}2𝑁×1 

(4.8)  

Where [𝐺𝑖𝑗], [𝐻𝑖𝑗] and [𝐵𝑖𝑗𝑘] are well known influence matrices. 

In a similar way, Eq. (4.3) could be rewritten in a matrix form (without the 

eigenstrain term) as follows: 

{𝜀𝑖𝑚(ξ)}3𝑁𝑂𝐼×1
applied

= [𝐺̅𝑖𝑗𝑚(𝜉, x)]3𝑁𝑂𝐼×6𝑁𝐸
{𝑡𝑗(x)}6𝑁𝐸×1

 

−[𝐻𝑖𝑗𝑚(𝜉, x)]3𝑁𝑂𝐼×2𝑁
{𝑢𝑗(x)}2𝑁×1

 

(4.9)  

Where [𝐺̅𝑖𝑗𝑚] and [𝐻𝑖𝑗𝑚] are the derivative of the influence matrices. 

Substituting from Eq. (2.52) into Eq. (4.9), gives:    

{𝜀𝑙𝑘
𝑜 }3𝑁𝑂𝐼×1 = [𝑒𝑘𝑖𝑚𝑙𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼

−1 ([𝐺̅𝑖𝑗𝑚(𝜉, x)]3𝑁𝑂𝐼×6𝑁𝐸
{𝑡𝑗(x)}6𝑁𝐸×1

                                                  

−[𝐻𝑖𝑗𝑚(𝜉, x)]3𝑁𝑂𝐼×2𝑁
{𝑢𝑗(x)}2𝑁×1

) 
(4.10)  

Substituting from Eq. (4.10) into Eq. (4.8) and rearrange, gives: 
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([𝐺𝑖𝑙(𝜉, x)]2𝑁×6𝑁𝐸

+[𝐵𝑖𝑗𝑘(𝜉, x)]2𝑁×3𝑁𝑂𝐼
[𝑒𝑘𝑞𝑚𝑗𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼

−1
[𝐺̅𝑞𝑙𝑚(𝜉, x)]3𝑁𝑂𝐼×6𝑁𝐸) 

{𝑡𝑗(x)}6𝑁𝐸×1
− ([𝐻𝑖𝑙(𝜉, x)]2𝑁×2𝑁 +[𝐵𝑖𝑗𝑘(𝜉, x)]2𝑁×3𝑁𝑂𝐼

 

[𝑒𝑘𝑞𝑚𝑗𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼
−1

[𝐻𝑞𝑙𝑚(𝜉, x)]3𝑁𝑂𝐼×2𝑁) {𝑢𝑗
(x)}

2𝑁×1
= {0}2𝑁×1 

(4.11)  

Introducing the following transformation matrix [L]: 

𝐿𝑖𝑗(x) = ∫𝜙𝑖
𝑇(x)𝜙𝑗(x)𝑑Γ(x)

Γ

 (4.12)  

which transforms the traction vector to concentrated load vector [3] where, 𝜙 is a 

set of relevant shape functions. Multiplying Eq. (4.12) by Eq. (4.11) and rearrange, 

it gives: 

{𝐹𝑖(x)}2𝑁×1 − [𝐾𝑖𝑗(𝜉, x)]2𝑁×2𝑁
{𝑢𝑗(x)}2𝑁×1

= {0}2𝑁×1 (4.13)  

where,  

{𝐹𝑖(x)}2𝑁 is the equivalent force vector and is given by:    

{𝐹𝑖(x)}2𝑁×1 = [𝐿𝑖𝑗(x)]2𝑁×6𝑁𝐸
{𝑡𝑗(x)}6𝑁𝐸×1

  (4.14)  

and [𝐾𝑖𝑗(𝜉, x)]2𝑁×2𝑁
  is the equivalent stiffness matrix and is given by: 

[𝐾𝑗𝑙(𝜉, x)]2𝑁×2𝑁
= [𝐿𝑗𝑙]2𝑁×6𝑁𝐸

([𝐺𝑖𝑙(𝜉, x)]2𝑁×6𝑁𝐸 +[𝐵𝑖𝑗𝑘(𝜉, x)]2𝑁×3𝑁𝑂𝐼
 

[𝑒𝑘𝑞𝑚𝑗𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼
−1

[𝐺̅𝑞𝑙𝑚(𝜉, x)]3𝑁𝑂𝐼×6𝑁𝐸)
−1

 

([𝐻𝑖𝑙(𝜉, x)]2𝑁×2𝑁 + [𝐵𝑖𝑗𝑘(𝜉, x)]2𝑁×3𝑁𝑂𝐼
 

(4.15)  
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u (displacement) 

Res

2 Res

1 

F (Load) 

F

2 

F

1 

i=2 
i=1 

∆𝐹2 

∆𝐹1 

[𝑒𝑘𝑞𝑚𝑗𝑘]3𝑁𝑂𝐼×3𝑁𝑂𝐼
−1

[𝐻𝑞𝑙𝑚(𝜉, x)]3𝑁𝑂𝐼×2𝑁
)  

It can be seen that despite the existence of damage inside the domain, Eq. (4.13) 

represents stiffness equation similar to that of the FEM with a boundary-only 

discretization. This equation could simulate the damage and could be solved in a 

similar way to that of the FEM. Consequently, using Eq. (4.10) the eigenstrain at 

the inclusions could be computed. Hence, using Eq. (4.3) the strain at the internal 

points could be computed. 

4.4. The proposed incremental iterative approach 

Tracing a problem damage requires the solution of Eq. (4.13) which is a nonlinear 

set of equations. In this chapter the secant algorithm [48] is used for its solution. 

 

Fig.(4.2): A load-displacement curve showing the secant algorithm. 
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Consider the nonlinear load-displacement curve shown in Fig.(4.1), the solution 

procedure is described as follows (given that the counter (i) represents the current 

number of the nonlinear iterations): 

1. Discretize the boundary of the problem into elements. 

2. Define the investigation points to cover the overall problem domain. 

3. Divide the total load into increments. 

4. At each load increment (j), the applied load {𝐹}𝑗
applied

 is computed as follows: 

{𝐹}𝑗
applied

= {𝐹}𝑗−1
applied

+ {∆𝐹} (4.16)  

 Where, {∆𝐹} is the load increment.   

5. Use Eq. (4.13) to compute the unknown displacement {𝑢𝑡}. 

{𝐹}𝑗
applied

= [𝐾]𝑗{𝑢𝑡}𝑗 (4.17)  

6. Compute the strain Eq. (4.9) and the equivalent strain Eq. (2.57) according to 

the used damage model (see Appendix B) at all investigation points. 

7. Compute the maximum value of the equivalent strain 𝜀𝑚𝑎𝑥
∗  of the undamaged 

investigation points. 

8. In this step the value of the occurred damage is computed via one of three 

ways:  

• Way 1 (Damage is computed based on local strains): 

In case of  𝜀𝑚𝑎𝑥
∗ > 𝜀𝐷 (where 𝜀𝐷 is the threshold strain, see Appendix B) insert a 

small virtual circular inclusion at this investigation point, with a Young’s modulus 

equals to: 

𝐸𝑛𝑒𝑤 = (1 − 𝐷)𝐸𝑜 (4.18)  
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Where, 𝐸𝑜 is Young’s modulus of the undamaged problem, D is the scalar damage 

variable representing the ratio of the area damaged in the material (D is calculated 

according to the assumed damage model, see Appendix B). 

• Way 2 (Damage is computed based on nonlocal strains): 

The nonlocal strain at each investigation point is computed by considering all the 

points inside a circle of radius equals the interaction radius R. Hence, the average 

of all strains computed at all points inside this circle is computed (recall Fig.(4.1)). 

The maximum equivalent strain 𝜀𝑚𝑎𝑥
∗  is computed at the undamaged investigation 

points. 

In case of  𝜀𝑚𝑎𝑥
∗ > 𝜀𝐷 , a small equivalent circular inclusion is inserted at this 

investigation point. The damage variable is computed at the inserted inclusion and 

for other previously damaged points (if any). modified Young’s modulus due to 

damage is computed in a similar way as Eq.(4.18): 

• Way 3 (Damage is computed based on nonlocal damage): 

The maximum equivalent strain 𝜀𝑚𝑎𝑥
∗  is computed at all undamaged investigation 

points. In case of  𝜀𝑚𝑎𝑥
∗ > 𝜀𝐷, a small equivalent circular inclusion is inserted at 

this investigation point. The damage variable is then computed at the inserted 

inclusion and for other previously damage points (if any). The nonlocal damage is 

computed for the damaged points and for all points inside the circle of radius R 

(recall Fig. (1)), then the modified Young’s modulus due to damage is computed 

in a similar way as Eq.(4.18). 

In case there are two points having the same 𝜀𝑚𝑎𝑥
∗  (i.e. cases of symmetric 

problems) two virtual inclusions are placed simultaneously with the same Young’s 

modulus as in Eq.(4.18). Otherwise, if 𝜀𝑚𝑎𝑥
∗ < 𝜀𝐷 and there is no damage at all 

investigation points, the load is increased (another load increment is added) in 

other words, jump to step 4. 
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9. Compute the updated stiffness [𝐾]𝑗
(𝑖)

(by rebuilding Eq. (4.15)) and compute 

the updated force vector as follows:  

{𝐹}𝑗
(𝑖)
= [𝐾]𝑗

(𝑖){𝑢𝑡}𝑗
(𝑖−1)

 (4.19)  

10. Compute the force residual vector {𝑅𝑒𝑠} due to the change in the problem 

stiffness resulting from the occurred damage, as follows:  

{𝑅𝑒𝑠} = {𝐹}𝑗
applied

− {𝐹}𝑗
(𝑖)

 (4.20)  

11. Compute the maximum value of {𝑅𝑒𝑠} to be denoted by Res_max. In case of 

Res_max > tolerance (it has to be noted that the tolerance is going to be 

chosen in the examples in section 4.6, and its effect will be demonstrated), 

continue to step 12 otherwise jump to step 16. 

12. Compute the change in displacement {Δ𝑢}𝑗
(𝑖)
 due to the residual force vector 

{𝑅𝑒𝑠}, and the change in strain {Δ𝜀}𝑗
(𝑖)

 from Eq. (4.3): 

{Δ𝑢}𝑗
(𝑖)
= ([𝐾]𝑗

(𝑖)
)
−1
{𝑅𝑒𝑠𝑗} (4.21)  

13. Compute the total displacement {𝑢𝑡}𝑗
(𝑖)
 , and total strain {𝜀𝑡}𝑗

(𝑖)
  at each 

damaged point, as follows:  

{𝑢𝑡}𝑗
(𝑖)
= {𝑢𝑡}𝑗

(𝑖−1)
+ {Δ𝑢}𝑗

(𝑖)
 (4.22)  

{𝜀𝑡}𝑗
(𝑖)
= {𝜀𝑡}𝑗

(𝑖−1)
+ {Δ𝜀}𝑗

(𝑖)
 (4.23)  

14. Modify the damage variable according to the modified total strain in Eq.(4.23) 

and then compute the modified Young’s modulus from Eq.(4.18). 
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15. Repeat steps from step 9 until the numerical value of the maximum force 

residual Res_max is within the chosen tolerance. In other words, jump to step 

9. 

16. Check the undamaged points: if there is no other point with 𝜀∗ > 𝜀𝐷, increase 

the applied load by {∆𝐹}  (apply another load increment) and repeat from step 

4, otherwise if there is other point with 𝜀∗ > 𝜀𝐷 jump to step8. 

17. In case the number of iterations (NI) reaches its maximum value (NImax, a 

chosen number will be demonstrated in the examples in section 4.6) for the 

secant algorithm and Res_max > tolerance, decrease the load increment, in 

other words, use one half of the load increment (j): and repeat the load 

increment starting from step 4. 

{∆𝐹}𝑗 =
1

2
{∆𝐹}𝑗 (4.24)  

Hence, repeat steps starting from step 4. 

This procedure is repeated until the problem reaches a stable damage pattern 

under a certain load or reaches numerical instability, regardless, increasing the 

number of nonlinear iterations or increasing the used tolerance level. Figure 

(4.3) demonstrates a flow chart that summarizes the above procedures.
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Fig.(4.3): Flow chart of the proposed incremental-iterative approach. 
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4.5. Visualizing the damage patterns 

A Matlab code is done by the author to visualize the damage pattern. In this 

code the coordinates of the center of the inclusions are entered with the radius 

defined and the corresponding damage variable. The program draws a circle at the 

given points with a color corresponding to the damage variable value. 

%A program to draw Damage pattern 
disp('A program to draw Damage pattern') 
NON=input('Enter number of nodes: '); 
NOI=input('Enter number of inclusions: '); 
clear nodalcoor;clear IDa; 
nodalcoor=load('coor.txt'); 
IDa=load('Dcoor.txt'); 
plot(nodalcoor(:,1),nodalcoor(:,2),'k') 
Xmax=max(nodalcoor(:,1)); 
Ymax=max(nodalcoor(:,2)); 
hold on 
for i=1:NOI     
        if IDa(i,4)>=0 && IDa(i,4)<0.2 %blue 
            filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,'b'); 
            hold on 
        elseif IDa(i,4)>=0.2 && IDa(i,4)<0.3 %cyan 
            filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,'c'); 
            hold on 
        elseif IDa(i,4)>=0.3 && IDa(i,4)<0.6 %green 
            filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,'g'); 
            hold on 
        elseif IDa(i,4)>=0.6 && IDa(i,4)<0.8 %yellow 
            filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,'y'); 
            hold on 
        elseif IDa(i,4)>=0.8 && IDa(i,4)<0.9 %orange 
            filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,[ 0.9100 

0.4100 0.1700]); %%%%%%%%%%%%%% 
            hold on 
        elseif IDa(i,4)>=0.9 && IDa(i,4)<=1 %red 
            filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,'r'); 
            hold on 
        end     
end 
pbaspect([Xmax,Ymax,1]) 
hold off 
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4.6. Numerical examples 

In this section, three numerical examples are solved to investigate the validity 

of the proposed formulation (the first is solved using local approach and the 

other two are solved using local and nonlocal approaches). It has to be noted 

that the allowable maximum number of nonlinear iterations is set to be 50 

(otherwise, it will be stated) as such number is found to be enough to trace all 

nonlinear steps. Throughout the numerical examples different parameters are 

considered for: 

1. Boundary discretizations. 

2. The inclusion pattern (intersected or staggered as demonstrated in Fig.(4.1)). 

3. Inclusion diameter. 

4. The residual tolerance level. 

5. Maximum number on nonlinear iterations.  

4.6.1 Fixed-Fixed beam 

This problem is as shown in Fig.(4.4) and was previously solved by Pituba and 

Lacerda [50] using the FEM. Mazars damage model is used (see the appendix 

B). The material properties of the beam are Eo=2.47×1010 N/m2, ν=0.2, a=0.7 

and b=8000 and 𝜀𝐷=0.00067. The beam thickness is 0.2 m. 

 

Fig.(4.4): Dimensions of the fixed-fixed beam in example 4.6.1. 
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The problem is solved with local damage approach using 17 boundary elements 

and with two investigation points patterns to allow inserting intersected or 

staggered inclusions. For intersected pattern a spacing of 0.078 m is used. For the 

staggered pattern a spacing of 0.0196 m is used. The problem is solved with a 

sufficient tolerance level of a value within the range of 0.1% to 1% of the applied 

load at each increment without any change in the results. The tolerance level is 

increased near the failure to allow tracking further steps in the nonlinear load-

displacement curve as shown in Fig.(4.5). 

The used inclusions are of diameter 0.11 m for the intersected pattern. Two 

diameters are used for the staggered pattern, they are 0.0302 m and 0.02 m. 

The computed nonlinear load-displacement curve at the point A (see Fig.(4.4)) is 

plotted in Fig.(4.5) together with the results of Pituba and Lacerda [50].    

The results in Pituba and Lacerda [50] are presented using finite elements 

discretizations of 0.11 mm.  It can be seen from Fig.(4.5) that the results of the 

proposed model are in good agreement with the previously published results of 

Pituba and Lacerda [50]. 

It can be seen that for the case of intersected pattern, numerical instability is 

detected at a load of 60.8 kN. Hence the tolerance is increased to from 1% to 3% 

to reach a load level of 62.1 kN then increased to 5% to reach a load level of 63.6 

kN. Hence, failure is detected at load level of 63.6 kN. In case of staggered 

pattern, the tolerance range from 0.1% to 1% was enough to trace all the nonlinear 

curve to failure. Figure (4.6) demonstrates the predicted damage patterns for the 

used two patterns (intersected and staggered) at different load levels. 
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Fig.(4.5): The computed nonlinear load-displacement curve for example 4.6.1. 
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Load1= 40.5 kN 

  
uy=0.218 mm uy=0.216 mm 

Load2= 49.7 kN 

  
uy=0.326 mm uy=0.3 mm 

Load3= 54.7 kN 

  
uy=0.461 mm uy=0.4 mm 

Load4= 60.8 kN 

  
uy=0.577 mm uy=0.597 mm 

Intersected pattern Staggered pattern 

The damage scale (D): 
 

Fig.(4.6): The predicted damage patterns for example 4.6.1. 
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The problem is solved again with different inclusion diameters. For the 

intersected case, two diameters are considered, i.e. 0.16 m and 0.078 m. This 

will produce double and half the inclusion size used before. For the staggered 

case, the considered diameters are (0.0427 m, 0.0283 m) and (0.0214 m, 

0.0142 m) for the double and the one-half inclusion size. In this example the 

analysis is carried out with fixed tolerance level of 1%. 

The load-displacement curve is shown in Figs. (4.7 and 4.8) for the intersected 

and staggered cases, respectively. It can be seen from the figures that there is a 

compatibility between the developed method results with those of the finite 

element having the same size. However, change of inclusion size could slightly 

affect the results in a similar way as the FEM, which is mentioned previously 

in [25] for local damage models.  
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Fig.(4.7): The load-displacement curve for example 4.6.1 with intersected inclusion patterns. 
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Fig.(4.8): The load-displacement curve for example 4.6.1 with staggered inclusion patterns. 
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450 mm 

100 mm 

P 

4.6.2 Simply supported beam   

 In this example, a simply supported beam under concentrated load shown 

in Fig.(4.9) is solved. This example was previously solved by Jirasek [25] 

using the FEM and reconsidered by Zhang et al. [64] using the SBFEM. The 

material properties are Eo= 20850428446 N/m2 and 𝑣 =0.2. The parameters of 

the damage model (as in appendix B) are 𝜀𝐷 = 0.00009 and 𝜀𝑓 = 0.005, and 

the interaction radius 𝑅 = 8 mm.  

The problem is discretized into 47 boundary elements. Intersected inclusion 

pattern is used (see Fig.(4.1)) with diameter of 5 mm. 

The load-displacement curves for the presented formulation using local (L) and 

nonlocal (NL) (strain and damage) cases are demonstrated in Fig.(4.10). Table 

(4.1) demonstrates the load level at which instability occurs with the 

corresponding adjusted tolerance level. It should be noted that the tolerance 

level is increased with the load level.  

The previous results of Jirasek [25] are also plotted on Fig.(4.10) for the sake 

of verification. As shown in Fig.(4.10), the case of nonlocal (using strain or 

damage) can well trace the nonlinear curve in more efficient way than that of 

the local case. The predicted damage patterns (contour maps) are demonstrated 

in Fig.(4.11) for the local and nonlocal models at various load steps (recall 

Fig.(6.10)), also the damaged areas (inclusions) are demonstrated in Fig.(4.12). 

 

 

 

Fig.(4.9): Dimensions of the simply supported beam in examples 4.6.2. 
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Damage patterns obtained from [64], are also presented in Figs.(4.11 and 4.12) 

for the sake of verification. It can be seen that in the local case, the damage is 

localized in some points whereas in the nonlocal cases the damage is more 

smooth.  

Table 4.1 : Adjusted tolerance at different load levels in example 4.6.2. 

Load level (N) Adjusted 

tolerance 

level 
Local 

Nonlocal (average 

strain) 

Nonlocal (average 

damage) 

4670.00 4880.00 4880.00 1% 

4857.90 5200.00 5132.36 3% 

4933.71 5270.00 5257.36 5% 

4946.76 5319.20 6% 

4966.21 5328.47 5382.36 7% 

4989.13 5341.23 8% 

5355.34 9% 

5030.00 5370.09 13% 

5384.62 15% 
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Fig.(4.10): Load-displacement curve for example 4.6.2. 
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Fig.(4.11): The predicted damage contour map for example 4.6.2 at load level of 4993.60 N. 
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Fig.(4.12): The predicted damaged areas (inclusions) for example 4.6.2 at load level of 4993.60 N 
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100 mm 

450 mm 

4.6.3 Simply supported beam with a notch  

In this example, a simply supported beam with a middle notch, and subjected to 

concentrated load, shown in Fig.(4.13) is solved. The problem was previously 

considered by Jirasek [25] using the FEM and by Zhang et al. [64] using the 

SBFEM. The material properties are Eo= 2×1010 N/m2 and 𝑣 =0.2. The 

parameters of the damage model (as in appendix B) are 𝜀𝐷 = 0.00009 and 𝜀𝑓 =

0.007, and the interaction radius 𝑅 = 4 mm. 

The problem is discretized into 68 boundary elements. Staggered inclusion pattern 

is used (see Fig.(4.1)) with two diameters of 2.5 and 1.75 mm. 

The load-displacement curves for the presented formulation using local (L) and 

nonlocal (NL) (strain and damage) cases are demonstrated in Fig.(4.14). Table 

(4.2) demonstrates the load level at which instability occurs with the 

corresponding adjusted tolerance level. 

The previous results of Jirasek [25] are also plotted on Fig.(4.14) together with 

experimental results [25,58] for the sake of verification. As shown in Fig.(4.14), 

the case of nonlocal (using strain or damage) can well trace the nonlinear curve in 

more efficient way than that of the local case. The predicted damage patterns 

(contour maps) are demonstrated in Figs.(4.15,4.17) for the local and nonlocal 

models at various load steps (recall Fig. (4.14)). Damage patterns obtained from 

 

Fig.(4.13): Dimensions of the notched simply supported beam in example 4.6.3. 
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[64] are also demonstrated in Figs. (4.15 - 4.18) for the sake of verification, also 

the damaged areas are demonstrated in Figs. (4.16 and 4.18). The shown figures 

demonstrated the good agreement with the results of reference [58].  

 

Table 4.2 : Adjusted tolerance at different load levels in example 4.6.3. 

Load level (N) 
Adjusted 

tolerance 

level 
Local 

Nonlocal 

(average 

strain) 

Nonlocal 

(average 

damage) 

1094.00 942.03 1281.99 1% 

1155.00 3% 

1182.55 1313.24 5% 

1279.00 6% 

1169.22 7% 
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Fig.(4.14): Load-displacement curve for example 4.6.3. 
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Load level= 892.20 N 

  

uy=0.038 mm uy=0.040 mm 
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Fig.(4.15): The predicted damage contour map (Nonlocal damage) for example 4.6.3. 
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Fig.(4.16): The predicted damaged areas (inclusions) (Nonlocal damage) for example 4.6.3. 
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Fig.(4.17): The predicted damage contour map (Nonlocal strain) for example 4.6.3. 
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Fig.(4.18): The predicted damaged areas (inclusions) (Nonlocal strain) for example 4.6.3. 
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4.7. Numerical discussion 

In this section the influence of parameters that affect the solution is discussed. 

The two previously solved examples 4.6.2 and 4.6.3 are re-considered herein by 

varying the following parameters: 

1. Boundary discretization 

2. Inclusion pattern 

3. Inclusion diameter 

4. The residual tolerance level. 

5. Maximum number of nonlinear iterations 

4.7.1.Boundary discretization 

In this section different boundary discretizations are considered, i.e. 17 & 47 

boundary elements are considered for example 4.6.2, and 38 & 68 boundary 

elements are considered for example 4.6.3.  

Figures (4.19 and 4.20) demonstrates the load-displacement curves for 

examples (4.6.2) and (4.6.3) for local and nonlocal models, respectively. It can 

be seen that problems having stress concentrations need more boundary 

discretiztion.  

4.7.2.Inclusion pattern 

In this section different inclusion patterns are considered, i.e. staggered and 

intersected (recall Fig.(4.1)). Figures (4.21 and 4.22) demonestrate the load-

displacement curves for examples (4.6.2) and (4.6.3), respectively. It can be 

seen from these figures that the used pattern affects the load-displacement 

curve. Therefore, in general, for a certain problem it is recommended to carry 

out the analysis using the two inclusion patterns (or in general more than one 
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pattern). Hence, the modeler can figure out the problem nonlinear behaviour 

based on the analyzed results. 

4.7.3.Inclusion diameter 

In this section different inclusion diameters are considered, in case of local and 

nonlocal models. For example (4.6.2) a diameter 2.5 mm (5 mm previously 

used) is used for the intersected pattern and, diameters (5 mm and 3.5 mm) and 

(2.5 mm and 1.75 mm) are used for the staggered pattern. For example (4.6.3) 

two diameters 1.2 mm and 0.84 mm (2.5 mm and 1.75 mm previously used) 

are used for the staggered pattern and, diameters 2.5 mm and 1.2 mm are used 

for the intersected pattern. The results are plotted in Figs.(4.23 and 4.24) for 

example (4.6.2) and in Figs.(4.25 and 4.26) for example (4.6.3). It can be seen 

that the results are affected by the decrease in inclusion diameter. Unlike the 

nonlocal models, such results are sensitive in the local damage model. 

4.7.4.Residual tolerance level 

Examples (4.6.2) and (4.6.3) are re-considered using constant different 

tolerance levels 1%, 3%, 6% and 10% to demonstrate the effect of the 

tolerance level on the results. Example (4.6.2) and example (4.6.3) are solved 

for the case of nonlocal strain and nonlocal damage, respectively. According to 

the load-displacement curve shown in Figs.(4.27 and 4.28), when starting the 

solution with a high tolerance level (for example 6%), the resulting curve is 

more stiff. As the high tolerance level allow jumping to another load step 

before developing the total nonlinear dispacement. So, it is recommended to 

start first with small tolerance level and then increases it gradualy if unstable 

results is detected. This exactly was demonestrated in the previous example 

sections in tables (4.1) and (4.2). 
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4.7.5.Maximum number of nonlinear iterations 

The former two examples (4.6.2) and (4.6.3) are solved using NImax equals 50. 

When instability in the results is detected such a number is increased to 100, 200, 

and 500. However, such an increase does not affect the solution. Hence, it is 

decided to increase the tolerance level instead (as presented in the former 

subsection). 

4.6.4 Conclusions 

In this chapter a new explicit boundary element modeling for the nonlocal damage 

was introduced. The solution requires boundary only discretization. If the strain 

exceeds the threshold strain at any point, an equivalent inclusion is placed to 

simulate its damage. The Eshelby’s theory was coupled with the direct boundary 

integral equations to model the introduced equivalent inclusions. A finite-element 

like stiffness matrix is formulated and obtained directly in a condensed form along 

the problem boundary. In the developed approach there is no need for a prior 

knowledge for the damage zone in the problem. The present formulation is a 

boundary-only formulation and stretches the BEM to another era in nonlinear 

applications. The proposed idea was implemented in a detailed incremental-

iterative load control procedure via computer code. 

It was observed in this chapter that if instability was detected increasing the 

tolerance gradually can trace the load-displacement curve. It was also 

recommended that a modeler should analyze the relevant problem using more than 

one inclusion pattern to be able to accurately predict the problem nonlinear 

behavior. 

The results of the examples demonstrated that the effect of discretization (either 

the boundary elements or the inclusion diameter) is decreased in the nonlocal 

approach than in the local one. Despite this observation, still this difference is 
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slightly more than the one occurred in the finite element method. This could be 

caused by the used circular inclusion type, which do not cover the overall 

damaged domain in both the intersected and the staggered patterns. Therefore, 

alternative types of inclusions (such as squares) should be furtherly investigated. 

In this chapter the solution was obtained only for the raising part of the load-

displacement curve, however it could be extended to model the falling part via 

using dispacement control or arclength algorithms. 

In the following chapter a new family of FE will be used using the variational BIE 

as discussed in chapter 2 in order to simulate damage in more efficient way than 

the conventianal FE with respect to  number of elements and the ability to use 

elemnts with arbitrary number of nodes which facilitates the modeling of the 

problem.
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Fig.(4.19): Load-displacement curve for example 4.6.2 with different boundary discretizations. 
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Fig.(4.20): Load-displacement curve for example 4.6.3 with different boundary discretizations. 
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Fig.(4.21): Load-displacement curve for example 4.6.2 with different inclusion patterns. 
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Fig.(4.22): Load-displacement curve for example 4.6.3 with different inclusion patterns. 
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Fig.(4.23): Load-displacement curve for example 4.6.2 with different inclusion diameters (intersected case). 
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Fig.(4.24): Load-displacement curve for example 4.6.2 with different inclusion diameters (staggered case). 
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Fig.(4.25): Load-displacement curve for example 4.6.3 with different inclusion diameters (intersected case) 
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Fig.(4.26): Load-displacement curve for example 4.6.3 with different inclusion diameters (staggered case). 
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Fig.(4.27): Load-displacement curve for example 4.6.2 with different tolerance level. 
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Fig.(4.28): Load-displacement curve for example 4.6.3 with different tolerance level. 
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Chapter 5: Damage simulation in Variational BIE  

5.1. Introduction 

In this chapter the VBIE is used to model damage. Using this 

formulation, a special type of finite element is used. This special type gives the 

ability to model the domain with lower number of degrees of freedom 

compared to the conventional FEM and create a symmetric stiffness. Three 

numerical examples are solved here to show the ability of the VBIE in 

modeling damage.   

5.2. Special type of finite elements using VBIE 

Using the VBIE described in chapter 2 special type of FE is used 

(Fundamental solution-based FE [59]). Instead of approximating the 

displacement on the boundary and inside the domain with interpolation 

function as in the conventional FE the displacement and traction are 

approximated on the boundary with interpolation functions, but inside the 

domain the displacement is calculated using the fundamental solution (recall 

Eq.(2.30, 2.31)). In this special type large size element can be used compared 

to the conventional FE.  

In this work regular element is used i.e. the source points are placed 

outside the element as shown in Fig.(5.1). Of course, the location of the source 

points is obtained by trials. Without loss of generality quadratic boundary 

elements are used to model each FE. 

On modeling damage only the part near the domain which is supposed to 

be damaged will be discretized with fine mesh and for the far part large 

discretization will be used. 
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5.3. Solution algorithm 

Consider the nonlinear load-displacement curve shown in Fig.(4.2), the 

solution procedure is described as follows (given that the counter (i) represents 

the current number of the nonlinear iterations): 

1. Discretize the domain of the problem into elements. 

2. Define the internal points inside each element. 

3. Divide the total load into increments. 

4. At each load increment (j), the applied load {𝐹}𝑗
applied

 is computed as 

follows: 

{𝐹}𝑗
applied

= {𝐹}𝑗−1
applied

+ {∆𝐹} (5.1)  

 Where, {∆𝐹} is the load increment.   

5. Use Eq. (2.37) to compute the unknown displacement {𝑢𝑡}. 

{𝐹}𝑗
applied

= [𝐾]𝑗{𝑢𝑡}𝑗 (5.2)  

6. Compute the strain and the equivalent strain according to the used damage 

model (see Appendix B) at all internal points as follows: 

  

Fig.(5.1): Finite element according to the VBIE  

Source points 

𝑙 
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𝜀𝑗𝑚(𝑦) = ∑ 𝜀𝑖𝑗𝑚
∗ (𝑦, 𝜉𝑘)𝜓𝑖

𝑘=𝑁

𝑘=1

(𝜉𝑘) (5.3)  

7. Compute the maximum value of the equivalent strain 𝜀𝑚𝑎𝑥
∗  of the 

undamaged elements. 

8. In case of  𝜀𝑚𝑎𝑥
∗ > 𝜀𝐷 (where 𝜀𝐷 is the threshold strain, see Appendix B) 

modify the Young’s modulus of the element to be: 

𝐸𝑛𝑒𝑤 = (1 − 𝐷)𝐸𝑜 (5.4)  

Where, 𝐸𝑜 is Young’s modulus of the undamaged problem, D is the scalar 

damage variable representing the ratio of the area damaged in the material (D is 

calculated according to the assumed damage model, see Appendix B). 

In case there are two points having the same 𝜀𝑚𝑎𝑥
∗  (i.e. cases of symmetric 

problems) the same Young’s modulus is assigned for the two elements as in 

Eq.(5.4). Otherwise, if 𝜀𝑚𝑎𝑥
∗ < 𝜀𝐷 and there is no damage at all elements, the 

load is increased (new load increment is added) in other words, jump to step 4. 

9. Compute the updated stiffness [𝐾]𝑗
(𝑖)

(by rebuilding Eq. (2.38)) and 

compute the updated force vector as follows:  

{𝐹}𝑗
(𝑖)
= [𝐾]𝑗

(𝑖){𝑢𝑡}𝑗
(𝑖−1)

 (5.5)  

10. Compute the force residual vector {𝑅𝑒𝑠} due to the change in the problem 

stiffness resulting from the occurred damage, as follows:  

{𝑅𝑒𝑠} = {𝐹}𝑗
applied

− {𝐹}𝑗
(𝑖)

 (5.6)  

11. Compute the maximum value of {𝑅𝑒𝑠} to be denoted by Res_max. In case 

of Res_max > tolerance, continue to step 12 otherwise jump to step 16. 

12. Compute the change in displacement {Δ𝑢}𝑗
(𝑖)
 due to the residual force 

vector {𝑅𝑒𝑠}, and the change in strain {Δ𝜀}𝑗
(𝑖)

 from Eq. (5.3): 
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{Δ𝑢}𝑗
(𝑖)
= ([𝐾]𝑗

(𝑖)
)
−1
{𝑅𝑒𝑠𝑗} (5.7)  

13. Compute the total displacement {𝑢𝑡}𝑗
(𝑖)
 , and total strain {𝜀𝑡}𝑗

(𝑖)
  at each 

damaged point, as follows: 

{𝑢𝑡}𝑗
(𝑖)
= {𝑢𝑡}𝑗

(𝑖−1)
+ {Δ𝑢}𝑗

(𝑖)
 (5.8)  

{𝜀𝑡}𝑗
(𝑖)
= {𝜀𝑡}𝑗

(𝑖−1)
+ {Δ𝜀}𝑗

(𝑖)
 (5.9)  

14. Modify the damage variable according to the modified total strain in 

Eq.(5.9) and then compute the modified Young’s modulus from Eq.(5.4). 

15. Repeat steps from step 9 until the numerical value of the maximum force 

residual Res_max is within the chosen tolerance. In other words, jump to 

step 9. 

16. Check the undamaged points: if there is no other point with 𝜀∗ > 𝜀𝐷, 

increase the applied load by {∆𝐹}  (apply another load increment) and 

repeat from step 4, otherwise if there is other point with 𝜀∗ > 𝜀𝐷 jump to 

step8. 

17. In case the number of iterations (NI) reaches its maximum value for the 

secant algorithm and Res_max > tolerance, decrease the load increment, in 

other words, use one half of the load increment (j): and repeat the load 

increment starting from step 4. 

{∆𝐹}𝑗 =
1

2
{∆𝐹}𝑗 (5.10)  

Hence, repeat steps starting from step 4. 

This procedure is repeated until the problem reaches a stable damage pattern 

under a certain load or reaches numerical instability, regardless, increasing 

the number of nonlinear iterations or increasing the used tolerance level. 
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5.4. Numerical examples 

Three numerical examples are solved here to demonstrate the ability of 

the variational formulation to model damage with coarse mesh compared to 

that of the conventional finite element method. In the examples shown the 

tolerance used is 1% and the maximum number of iterations is 50. The 

location of the source points 𝑙 = 4𝑚. The number of internal points in each 

element is the number of nodes plus one 

5.4.1.Simply supported beam 

This problem as shown in Fig.(4.9) was previously solved by Jirasek 

[25] using the FEM. The damage model according to Jirasek [25] as 

mentioned in Appendix B is used. The material properties of the beam are 

Eo=21670724658 N/m2, ν=0.2, 𝜀𝐷=0.00012 and 𝜀𝑓=0.007. The beam 

thickness is 100 mm.  

Only half of the problem is solved due to symmetry. The problem is solved 

using 2 discretization, 201 element (mesh 1 with size 5 mm near the mid of 

the beam) and 697 element (mesh 2 with size 2.5 mm near the mid of the 

beam) as shown in Fig.(5.2 and 5.3). The number of internal points in each 

element is the number of nodes plus 1. 

 

Fig.(5.2): Mesh1 of the domain of half of the problem in example 5.4.1. 
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Figure (5.4) shows the load-displacement curve of the problem at the 

midpoint of the beam. The results are compared to that of Jirasek [25] at 

which the problem was solved using conventional finite element method 

with two meshes 15 mm and 5 mm. Good agreement with the results is 

shown, although course mesh is used compared to that of Jirasek [25], 

which shows the ability of the variational formulations to use large size 

elements with arbitrary number of nodes. 

 

 

Fig.(5.3): Mesh 2 of the domain of half of the problem in example 5.4.1. 
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Fig.(5.4): Load-displacement curve of example 5.4.1. 
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5.4.2. Fixed-Fixed beam 

This problem as shown in section 4.6.1 is solved here using the VBIE. The 

problem is discretized as shown in Fig.(5.5, 5.6)  with two meshes. 

The load displacement curve at point A Fig.(4.4) is shown in Fig.(5.7) with 

the solution of Pituba [50]. Good agreement with the results of [50] is achieved.

 

Fig.(5.5): Mesh 1 of the domain of half of the problem in example 5.4.2. 

 

Fig.(5.6): Mesh 2 of the domain of half of the problem in example 5.4.2. 
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Fig.(5.7): Load-displacement curve of example 5.4.2. 
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5.4.3. Simple beam with notch 

This problem shown in Fig.(4.13) was previously considered by Jirasek [25] 

experimentally and verified by FEM. The damage model according to Jirasek 

[25] as mentioned in Appendix B is used. The material properties of the beam 

are Eo=2×1010 N/m2, ν=0.2, 𝜀𝐷=0.00012 and 𝜀𝑓=0.007. The beam thickness is 

100 mm. The main purpose of this example is to demonstrate the stability of 

the proposed formulation to trace the damage in cases of stress 

concentrations. 

Only half of the problem is solved due to symmetry. The problem solved 

using 2 discretization, 193 element (mesh 1) and 681 element (mesh 2) as 

shown in Fig.(5.8 and 5.9). 

 

Fig.(5.8): Mesh 1 of the domain of half of the problem in example 5.4.3. 
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Figure (5.10) shows the load-displacement curve of the problem at the 

midpoint of the beam. The results are compared to that of Jirasek [25] at 

which the problem was solved using conventional finite element method 

with two meshes 5 mm and 1.67 mm, also experimental results for the 

problem are shown. Good agreement with the results is shown, although 

course mesh is used compared to that of Jirasek [25], which shows the 

ability of the variational formulations to use large size elements with 

arbitrary number of nodes 

 

 

Fig.(5.9): Mesh 2 of the domain of half of the problem in example 5.4.3. 
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Fig.(5.10): Load-displacement curve of example 5.4.3. 
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5.5. Conclusions 

It was shown in this chapter the ability of the variational formulation to 

model the damage with good accuracy despite using large size elements 

compared with the conventional finite element method. 
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Chapter 6: Summary and Future work 
 

6.1. Summary 

In this Thesis: 

Eshelby’s theory for equivalent inclusions was coupled with the indirect boundary 

integral equation (as a meshless technique) to solve problems with inhomogeneity 

for the first time using the indirect boundary integral equations. 

Eshelby’s theory coupled with the direct boundary integral equation was used to 

model damage where a finite-element like stiffness matrix is formed for the 

damaged problems obtained directly on the boundary in a condensed form.  

The variational formulation for 2D elasticity has been used to model damage 

where the advantage of using coarse finite element compared to the conventional 

finite element was shown.   

6.2. Future work 

1- Our algorithm for the damage can be modified to use the displacement control 

or the arc length technique to be able to trace the snap through and snap back 

curves. 

2- Use of inclusions with other shapes than the circle to be able to improve the 

modelling of the damaged areas (or the inhomogeneous parts). 

3- Use adaptive techniques for the VBIE formulation. 
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Appendix A 
 

Eshelby tensor for interior (𝑖 = 𝑗) and exterior point (𝑖 ≠ 𝑗) [3,24,30]: 

For 𝑖 = 𝑗: 

𝑆𝑞𝑙𝑚𝑛
𝑖𝑖 =

1

8(1 − 𝜈)
(3 − 4𝜈)(𝛿𝑞𝑚𝛿𝑙𝑛 + 𝛿𝑞𝑛𝛿𝑙𝑚) + (4𝜈 − 1)𝛿𝑞𝑙𝛿𝑚𝑛 (A.1)  

For 𝑖 ≠ 𝑗: 

𝑆𝑞𝑙𝑚𝑛
𝑖𝑗

=
𝜌2

8(1 − 𝜈)
{(𝜌2 + 4𝜈 − 2)𝛿𝑞𝑙𝛿𝑚𝑛

+ (𝜌2 − 4𝜈 + 2)(𝛿𝑞𝑚𝛿𝑙𝑛 + 𝛿𝑞𝑛𝛿𝑙𝑚) + 4(1 − 𝜌
2)𝛿𝑞𝑙𝑟,𝑚𝑟,𝑛

+ 4(1 − 2𝜈 − 𝜌2)𝛿𝑚𝑛𝑟,𝑖𝑟,𝑗

+ 4(𝜈 − 𝜌2)(𝛿𝑞𝑚𝑟,𝑙𝑟,𝑛 + 𝛿𝑙𝑚𝑟,𝑞𝑟,𝑛 + 𝛿𝑞𝑛𝑟,𝑙𝑟,𝑚 + 𝛿𝑙𝑛𝑟,𝑞𝑟,𝑚)

+ 8(3𝜌2 − 2)𝑟,𝑞𝑟,𝑙𝑟,𝑚𝑟,𝑛} 

(A.2)  

Where, 

   𝜌 =
𝑅

√𝑥2+𝑦2
 (A.3)  

  The expression of 𝑄 for interior (𝑖 = 𝑗) and exterior point (𝑖 ≠ 𝑗) [24,61]: 

 For 𝑖 = 𝑗: 

𝑄𝑚𝑞𝑙
𝑖𝑖 =

1

8(1 − 𝜈)
(−(𝛿𝑚𝑞𝑥𝑙 + 𝛿𝑚𝑙𝑥𝑞 + 𝛿𝑞𝑙𝑥𝑚) + 4𝜈𝛿𝑞𝑙𝑥𝑚

+ 4(1 − 𝜈)(𝛿𝑚𝑞𝑥𝑙 + 𝛿𝑚𝑙𝑥𝑞)) 

(A.4)  

For 𝑖 ≠ 𝑗: 

𝑄𝑚𝑞𝑙
𝑖𝑗

=
𝜌2

8(1 − 𝜈)
{(𝜌2 − 2)(𝛿𝑚𝑞𝑥𝑙 + 𝛿𝑚𝑙𝑥𝑞 + 𝛿𝑞𝑙𝑥𝑚) + 4𝑟(1 − 𝜌

2)𝑟,𝑞𝑟,𝑙𝑟,𝑚

+ 4𝜈𝛿𝑞𝑙𝑥𝑚 + 4(1 − 𝜈)(𝛿𝑚𝑞𝑥𝑙 + 𝛿𝑚𝑙𝑥𝑞)} 

(A.5)  
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Appendix B 
 

There are two damage models used herein, the first is the Jacky Mazars’s damage 

model [37,38] which is used for concrete and defines the local damage as follows: 

𝐷(𝜀∗) = {
1 − [

𝜀𝐷(1 − 𝑎)

𝜀∗
+

𝑎

𝑒𝑥𝑝(𝑏(𝜀∗ − 𝜀𝐷))
] 𝑖𝑓 𝜀∗ ≥ 𝜀𝐷

0 𝑖𝑓 𝜀∗ < 𝜀𝐷

 (B.1)  

Where, 𝜀𝐷 is the threshold strain, a, b, are material constants obtained 

experimentally. 

The second damage model is according to [25,64] and define the local damage as 

follows: 

𝐷(𝜀∗) = {
1 −

𝜀𝐷
𝜀∗
𝑒𝑥𝑝(−

𝜀∗ − 𝜀𝐷
𝜀𝑓 − 𝜀𝐷

) 𝑖𝑓 𝜀∗ ≥ 𝜀𝐷

0 𝑖𝑓 𝜀∗ < 𝜀𝐷

 (B.2)  

Where, 𝜀𝑓 is a material constant defined in [25,64]. 

It has to be noted that Poisson’s ratio is assumed to be unchanged due to the 

occurred damage. 
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Appendix C 
 

 

The analytical solution for stresses for Kirch problem is [58]: 

𝜎𝑥𝑥(𝑟, 𝜃) = 𝜎𝑜 [1 −
𝑅2

𝑟2
(
3

2
𝑐𝑜𝑠2𝜃 + 𝑐𝑜𝑠4𝜃) +

3𝑅2

2𝑟2
𝑐𝑜𝑠4𝜃] (C.1)  

𝜎𝑥𝑦(𝑟, 𝜃) = 𝜎𝑜 [−
𝑅2

𝑟2
(
1

2
𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃) +

3𝑅2

2𝑟2
𝑠𝑖𝑛4𝜃] (C.2)  

𝜎𝑦𝑦(𝑟, 𝜃) = 𝜎𝑜 [−
𝑅2

𝑟2
(
1

2
𝑐𝑜𝑠2𝜃 − 𝑐𝑜𝑠4𝜃) −

3𝑅2

2𝑟2
𝑐𝑜𝑠4𝜃] (C.3)  

in which, R and r are as define in Fig.(4.4). 
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 محتوى الرســالة 
 

   الباب الأول :  مقدمــة

 . مراجعة على ما سبق بخصوص موضوع نمذجة التلف و نمذجة المسائل الغير المتجانسة يتضمن هذا الباب

 الخلفية النظرية الباب الثانى :  

هذا   المباشرة    البابيعرض  )الطريقة  العناصرالحدودية  في طريقة  المختلفة  الحل  اساليب  على   –مراجعة 

و دمجها مع المعادلة التكاملية   الغير مباشرة و التغيريية(. كذلك يتم توضيح نظرية اشيلبي للشوائب المكافئة

كا التلف كطريقة لدراسة  و كذلك يتم نوضيح المقصود بميكاني الحدودية المباشرة لحل المسائل الغير متجانسة.

  الضعف في جساءة الوسط نتيجة التلف.

المعادلة التكاملية الحدودية الغير مباشرة في وجود الأجزاء  :     ثالثالباب ال

   الغير متجانسة

نظرية  طريقة الاجهادات التخيلية مع حل المسائل ذات الأجزاء الغير متجانسة من خلال دمج  البابيقدم هذا 

 . المكافئةالدخيلة شوائب اشيلبي لل

 في المعادلة التكاملية الحدودية المباشرة  لتلفامحاكة  : رابعالباب ال

لل  البابيقدم هذا   اشيلبي  التلف من خلال دمج نظرية  لمحاكاة  المقترح  المكافئة مع  الدخيلة  شوائب  النموذج 

 مع حل بعض الأمثلة لتوضيح صلاحية الأسلوب المقترح لنمذجة التلف. المعادلة التكاملية الحدودية المباشرة

 التغييرية  محاكة التلف في المعادلة التكاملية الحدودية:  خامسالباب ال

حيث يتم الاستفادة من دقة الطريقة    نمذجة التلف باستخدام طريقة العناصر الحدودية التغييريةالباب  يقدم هذا  

العناصر  يتم عمله في  بما  نسبيا مقارنة  بعناصر كبيرة  الوسط  تقسيم  المحدودة من خلال  بالعناصر  مقارنة 

 .المحدودة

   لاستنتاجاتوا ة صلاالخ: لسادسلباب اا

  و الأستنتاجات و كذلك الموضوعات المستقبلية. الباب ما تم انجازه في البحثيلخص هذا 

  



 

 

 

 ملخص الرســالة 
 

 :هذه الرسالة مقسمة الى ثلاثة اجزاء

ا الجزء  للشوائب    لأولفي  اشيلبي  دمج نظرية  التخيلية  الدخيلة  يتم    –المكافئة مع طريقة الاجهادات 

تعتبر  لعمل نمذجة للمسائل الغير متجانسة. طريقة الاجهادات التخيلية    –كطريقة لا تحتاج الى تقسيم  

و    تممجزء مالعناصر الحدودية الغير مباشرة. المسئلة يتم حلها من خلال تقسيمها الى    احدى طرق

تحصل   تممخلال نظرية اشيلبي. و عليه الجزء الم من  جزء خاص. الجزء الخاص يتم الحصول عليه

التخيلية.   الاجهادات  طريقة  خلال  من  الشوتعليه  لنمذجة  التحليلي  الحل  استخدام  هنا    الدخيلة  ئبام 

في هذه الطريقة لا يوجد نقسيم على حدوج المسئلة او داخلها. يتم    الدائرية التي استخدمناها في الحل.

توز من خلال  المسئلة  مركز  حل  المسئلة في  داخل حدود  نقط  المسئلة و وضع  حدود  على  نقاط  يع 

غم من ان توزيع الاجهادات التخيلية على حدود المسئلة  ئر الممثلة للأجزاء الغير متجانسة. بالراالدو

داخل الشوائب الدخيلة المكافئة فان نتائج الأمثلة جيدة    الذاتي  تم فرضها ثابت و كذلك توزيع الانفعال

ارنة مع طريقة المعادلات التكاملية الحدودية المباشرة و كذلك طريقة العناصر المحدودة كما هو قم

 .ثالثمبين في الفصل ال

مج  مل تمثيل جديد للتلف باستخدام الصيغة المباشرة للعناصر الحدودية. يتم دعيتم    نيفي الجزء الثا

للشوائب   اشيلبي  في الدخيلة  نظرية  التغيير  لنمذجة  المباشرة  الحدودية  التكاملية  المعادلة  المكافئة مع 

التي   مثل  للتلف  المعرض  للوسط  جساءة  مصفوفة  على  الحصول  يتم  التلف,  نتيجة  المادة  خواص 

مع   المحدودة,  العناصر  من  عليها  مبانحصل  عليها  الحصول  يتم  المصفوفة  تلك  ان  علي لعلم  اشرة 

  حدود الوسط. في تلك طريقة يتم تقسيم حدود الوسط فقط بالرغم من وجود اجزاء تالفة في الوسط. 

نظام المعادلات الغير خطي الناتج يتم حله باستخدام طريقة القاطع و يتم اعتبار الحمل هو المتحكم.  

 . رابعن في الفصل الكما هو مبي العديد من المسائل تم حلها لتوضيح صلاحية الطريقة المقترحة

في الجزء الثالث يتم مراجعة نموذج التلف في طريقة العناصرالمحدودة. يتم بعدها مناقشة المعادلة  

التكاملية الحدودية التغيرية حيث يتم عمل مصفوفة جساءة مكافئة لما يتم عملة في العناصر المحدودة  

التكاملية   المعادلة  التلف.  نموذج  في  استخدمناها  التي  لاستخدام  و  القدرة  تعطي  التغيرية  الحدودية 



 

 

 

عناصرذات ابعاد كبيرة نسبيا مقارنة بالعناصر المحدودة التقليدية. تبين الأمثلة في الفصل الخامس ان 

           نتائج الطريقة جيدة بالرغم من استخدام عناصر ذات الأبعاد الكبيرة. 

 



 

 

 

التلف باستخدام شوائب اشيلبي  نمذجة ميكانيكا 
 الدخيلة 

 

 

 إعـداد

 محمد أحمد كمال عبد الخالق أحمد سليمانمهندس /  
 

 بنها ، جامعة  بشبرا رسـالة مقدمة إلى كلية الهندسـة
 دكتوراه الفلسفة كجزء من متطلبات الحصـول على درجة 

 في الرياضيات الهندسية 

 

 التوقيع            يعتمد من لجنة الممتحنين:
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 قسم الفيزياء و الرياضيات الهندسية 
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