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Abstract

This Thesis consists of three parts:

In the first part of the thesis, the idea of the Eshelby equivalent inclusion
theory is coupled with the Fictitious stress method (FSM) as a meshless
technique to model inhomogeneity problems. The FSM is regarded herein as an
indirect boundary element formulation. The problem is divided into
complementary and particular parts. The particular solution is obtained using
Eshelby theory. Hence the complementary solution could be obtained using the
FSM. Analytical solutions are used to model circular inclusions. In this
approach there is no meshing on the boundary or inside the domain. The
problem is solved by distributing points on the boundary and inserting points at
the center of the inhomogeneities. Although the fictitious stresses on the
boundary is assumed constant and also the eigenstrain inside the inclusion is
assumed uniform the results are in good agreement with the direct boundary
integral equation method and the finite element method as will be shown in
chapter 3.

In the second part of the thesis, a new simulation of damage in the direct
boundary element formulation is presented. The Eshelby equivalent inclusion
theory is coupled with the direct boundary integral equation to model the
change in the elastic properties due to damage. A finite element-like stiffness
matrix is formed for the damaged domain, where the problem stiffness matrix
Is obtained directly on the boundary (in condensed form). The developed
method is a boundary-only method although the domain contains damaged
parts. A system of nonlinear equation is then solved using a load control
approach (secant method). Both local and non-local damage models are
considered. Several examples are presented to demonstrate the validity and the
accuracy of the proposed formulation as will be shown in chapter 4.

In the third part, the application of the damage modelling within the
finite element method is reviewed. Hence the basic theory of the variational

boundary integral equations (VBIE) is discussed, where a finite element-like



stiffness matrix obtained using VBIE is used to model the damage. The VBIE
gives the ability to use large dimensions compared to the conventional finite
element. Although using coarse mesh the results as will be shown in chapter 5

are in good agreement with the conventional finite element.
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Chapter 1: Introduction

1.1 Problem statement and background

Inhomogeneity problems have important applications in engineering. For
example, modelling composite materials, damage, cracks and dislocations
could be considered as inhomogeneities [63].

The inhomogeneity problem has been modelled using the direct boundary
integral equation method (DBIEM) in several researches [19-21,61], but no
research has been reported to use meshless methods for such a problem.

Meshless methods are very attractive as they get rid of the meshing
problem (recall Belytschko et al. [4]). The method of fundamental solution
(MFS) [10] is regarded, in the literature, as the only meshless method based on
the indirect boundary element method. Alternatively, the fictitious stress
method (FSM) [8,9,12,60], the displacement discontinuity method (DDM) [8],
the non-singular method of fundamental solution (NMFS) [28,32,33,36] and
the boundary node method (BNM) [30,41,62] could be also regarded as
meshless methods as only points are presented to describe the problem
boundary. All relevant integrals are performed analytically; i.e. no numerical
integration is employed. In the MFS sources are placed outside the boundary of
the problem on a fictitious boundary (to avoid singularities), where the solution
Is formed as the superposition of several states employing relevant fundamental
solutions. Its main problem is the location of the fictitious boundary which
makes the solution not unique [10]. In the NMFS the sources are distributed
over circular disks whose centers are on the boundary. Employing this trick the
singularity problem is avoided and in the same time the method still gains the
advantage of being a meshless method. Despite they were developed prior to
the NMFS, the FSM and the DDM, in that sense, also could be regarded as

meshless techniques as they integrate the relevant fundamental solutions over
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lines (instead of disks in the NMFS) which also could be located on the
problem boundary. Therefore, such methods are even more powerful compared
to the NMFS, as the later accuracy is still dependent on the size of the chosen
disk. It has to be noted that the advantage of FSM, DDM and NMFS over
BNM (which also uses analytical integration) is that there is no interchange
between influence matrices columns in case of different prescribed boundary
conditions.

Carpinteri et.al [8] used the FSM and DDM to model microcracks propagation
in brittle materials subjected to compression. Also, Carpenteri and Yang [9]
used the FSM to study microcracks propagation and intersection by
superposition, where the FSM was first used to calculate the internal stresses in
absence of microcracks then their effects were added. Liu and Sarler [33] used
NMFS to study bi-material problems where they discretized the interface and
solved the problem.

The study of damage mechanics is important in engineering as it predicts
the structure’s failure load, so it can be used in repair problems to interpret the
origin of the occurred damage. The continuum damage mechanics is the
approach to study the degradation of the medium properties due to damage.
There are two approaches to deal with damage the first is from the
phenomenological point of view where the damage is described by changing of
the material properties according to Kachanouv [43], the second is from the
micromechanical point of view. Here the first approach is used.

When dealing with quasi-brittle materials due to strain softening the
problem becomes ill-conditioned and mesh dependent [1,2,25,26,49]. So, a
localization limiter is needed to overcome this problem [26]. One of the
localization limiters is the nonlocal damage theory. Where a chosen variable is
replaced by its weighted average in a relevant nonlocal integral type
[2,25,26,49] or incorporating higher order gradients in the constitutive model in
the nonlocal differential type [44].

Simulating damage using the finite element method (FEM) [25,26,13] is

carried out in an explicit procedure, where in each damaged element, a
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damaged material property is directly assigned. As in FEM, Zihua Zhang et al.
[64] modeled the nonlocal damage using the scaled boundary finite element
method (SBFEM). The problem domain is discretized into cells where each cell
is assigned with different material properties according to the damage level.
This formulation suffers the same disadvantage as that of the FEM in terms of
the need to discretize the whole domain, which loses the advantage of the
SBFEM.

Silva and Castro [52-56] have simulated the damage using non-
conventional finite elements, hybrid mixed [52,53,56] and the hybrid Trefftz
[54]. In the hybrid mixed the stress and the displacement are approximated
inside the domain using Legendre polynomial and on the boundary the
displacement is approximated using the usual shape function. In the hybrid
Trefftz the displacement only is approximated inside the domain using Trefftz
function and on the boundary the displacement is approximated using the usual
shape functions.

In the boundary element method (BEM) [7], where the discretization is
carried only on the boundary, the change in material properties due to domain
damage was modeled by one of three approaches. The first approach is to apply
initial strain or initial stress to the homogeneous problem. The second approach
is to discretize the domain with subregions and change the overall property of
each subregion according to the damage level. The third approach is to couple
the BEM with the FEM to use the advantage of the FEM in explicitly modeling
damage.

The first approach was considered in the work of Rajgelj et al. [51] and
Herding and Kuhn [22], where local damage is modeled by discretizing the
domain into cells. It has to be noted that [51] considered quasi-brittle materials
and [22] elastoplastic materials. Both [51] and [22] applied the continuum
damage mechanics (CDM) approach [43] in their formulation. Lin et al. [31]
simulated the nonlocal damage for quasi-brittle materials using initial stress.
The plasticity damage model with yield degradation was considered in [31].

Sladek et al. [57] used the first approach to model elastoplastic materials. Botta
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et al. [5,6] and Mallardo [35] applied initial stress to model nonlocal damage.
In [35] the CDM approach in [11] was used to model the damage and the arc
length technique [34] was used to solve the nonlinear equations. Peixoto et al.
[45] applied initial strain with the nonlocal damage (using CDM approach). In
reference [45], the variation in strain is decomposed into strain due to the
external applied load and another strain due to residual load. This
decomposition made it easy to use several control methods in their algorithm
with application to the elastoplastic materials and materials with degrading
elasticity. Peixoto et al. [47] applied also initial strain with nonlocal damage
(using CDM approach) as in [45], but with different numerical integration
procedure for the calculation of the averaged variable. Peixoto et al. [46] used
the first approach coupled with the strong discontinuity analysis to model the
strain softening to overcome the size effect due to localization.

Considering the second approach: Garcia et al. [17] modeled the nonlocal
damage using CDM approach. The grid method [15] is used for the nonlocal
approach, so the subregion dimensions are assigned equal to the interaction
radius (which is obtained from experimental results). The average of the strain
is carried out over each subregion. The disadvantage of this simulation is the
domain discretization which makes the BEM lose its main advantage of
discretizing the problem boundary only.

Considering the third approach Mobasher and Waisman [40] studied the
damage problem by coupling the BEM and the FEM (nonlocal damage is
used). The damaged part is modeled using the FEM and the rest of the problem,
which is linear, is modeled using the BEM. The main disadvantage of this
model is the need to prior knowledge of the locations of the damaged parts in
the problem before the analysis, which of course is not known in the practical
problems. In chapter 5 and 6, it will be demonstrated that the BEM can model
damage without coupling with the FEM.

Eshelby [15] in 1957 setup a theory to solve inhomogeneous problems in
elasticity where the problem can be solved as a homogeneous problem with a

prescribed strain (eigenstrain) at the locations of inhomogeneities. This theory
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Is suitable to be coupled with the boundary element method where no domain

discretization is required.

1.2 Thesis objectives

The object of this research is:

1. Using the Variational formulation in BEM to model damage in 2D elasticity
problems.

2. Coupling indirect boundary integral equation as a meshless technique with
Eshelby’s theory to model 2D elasticity problems with inhomogeneities.

3. Introducing a new damage modeling using Eshelby’s theory of equivalent
inclusions coupled with direct boundary integral equation for 2D elasticity
problems.

1.3 Thesis organization

This thesis consists of six chapters after this chapter. These chapters
contain the followings:

Chapter 2: Theoretical background.

Chapter 3: Indirect BIE with inhomogeneities.

Chapter 4: Damage simulation in Direct BIE.

Chapter 5: Damage simulation in Variational BIE.

Chapter 6: Conclusion.
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Chapter 2: Theoretical background

2.1. Introduction

In this chapter a theoretical background is introduced for different
approaches for the boundary element method, direct, indirect boundary integral
equations and the boundary integral equation based on the variational principle.
Also, in this chapter Eshelby’s theory for equivalent inclusions is introduced
and how it is coupled with the direct boundary integral equation to solve

problem with inhomogeneities.

2.2. Governing equations of 2D Elasticity

Consider a 2D elasticity problem as shown in Fig.(2.1) the governing system of

equations (in the absence of body load) are [7]:

T=T,UT,

Fig.(2.1): 2D Elasticity problem

O-ij,j =0 (21)

u; = ﬂi on Fu (22)

Ei = O'ijnj on Ft (23)

0;j = Cijri€n (2.4)
1

Sij = E (ui’j + uj,i) (25)

Where, a;j, &, and Cyj; are the stress, strain and elasticity tensor. u; is the

displacement vector on the boundary, %; and t; are the vectors of known
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displacements and tractions on the boundary. n; is the outward normal to the

boundary.
2Gv
Cijrr = m(si 0k + G (88 + 81651.) (2.6)
G = d 2.7
T 2(1+4v) 2.7)

Where G, E and v are the shear modulus, Young’s modulus and Poisson’s

ratio, respectively.

2.3. Fundamental solutions for 2D Elasticity

The fundamental solution is the solution of the problem in infinite domain due

to a unit load.

~1
Ui (€, x) = m [(3 —4v)In(r)é;; — r,ir,j] (2.8)

T, x) = = )r [7‘,n ((1 —2v)6;; + 27‘,i7”,j) 29)

-1 =2v)(rmy —rjmy)]

o7 (§, %) = — [ = 20)[(riedyi + 76 — adu) +2rmyma] - (2.10)

4t(1 —v)
U{; (€, x)and T;; (&, x) are the fundamental solutions of displacement and

traction [7] in j direction at field point x due to unit load in i direction at source

point £. 75, (€, x) is the fundamental solution of stress [7] in j direction acting

upon plane whose normal is in k direction due to a unit load in i direction.

2.4. Boundary element method

The boundary element method (BEM) is a semi-analytical method, where only

the boundary is discretized. The method is divided into three main methods:
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1. Direct boundary integral equation method
2. Indirect boundary element method

3. Variational boundary integral equation method

2.4.1.Direct Boundary integral equation method

In this method the governing differential equation Eq.(2.1) is converted to

integral equation using Green’s identity [7] as follows:

c;j(u; () = f Ui (€, x)t;(x)dl'(x) — f T} (€, x)u; (x)dlr'(x) (2.11)
r r
0 & outside the domain
¢;j(§) = { 1 ¢ inside the domain (2.12)
Get it using rigid body consideration & on the boundary

Where, u;(x) and t;(x) are the displacements and tractions at the field point x
in j direction. Eqg.(2.11) represents the boundary integral equation for
displacement.

In EQ.(2.11) the integrals are on the boundary of the problem, and there is no
domain integral. So, for any problem the boundary is only discretized. The
discretization of the boundary is only needed to solve the integrals, unlike the
finite element method where the domain discretization is needed to
approximate the governing equations. Equation (2.11) is an exact form of
Eq.(2.1).

The matrix form of Eq.(2.11) is [7]:

[Hlonson{udanx:s = [Glonxeneltlenexa (2.13)

Where, NE is the number of elements used to discretize the boundary and N is
the number of nodes.

Solving Eq.(2.13) the displacements and tractions at the boundary are known.
To get the internal displacement substitute in Eqg.(2.11). To get the internal

strain differentiate Eq(2.11) with respect to the source point & which gives:

i) = [ Uy (€ 0560dMG) = [ 506,300 (9N G0 2.14)

r r
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Where,

Uijm (& %) = o= [(1 = 20) (rn + 730m) 761
8n(1 —v)Gr (2.15)
+ 211
. -1
Tijm (€, %) =

prercpen ] LU G GRUTR LR R T

+ 4ryrr;) = 2(1 = 2Ty,

—2vr (Nt + ;)

(2.16)
-(1- ZV)(nm5ji + ni6jm)+(1 - 2V)nj5im]

2.4.2.Indirect Boundary element method

In this method instead of solving the real problem, an infinite domain is solved

subjected to unknown forces P; in order to make its boundary condition the
same as the real problem Fig.(2.2) [12,32].

/ Vo
/) Vo
N %
(a) Discrete Source points (b) Distributed sources
Fig.(2.2): Source points
From Fig.(2.2a)
k=N
(@) = ) U0 0P, (2.17)
k=1
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k=N
tj(x) = z T35 (x, §1) Py (2.18)
k=1

The unknown forces are placed at the source points . If the source points are
placed outside the problem domain as in Fig.(2.2) then Egs.(2.17) and (2.18)
are regular (not singular) but the problem solution will depend on the distance
at which the source points are placed, i.e. the solution is not unique.

In order to overcome the problem of singularity of the above equations
distributed sources Fig.(2.2b) are used so that the 2 above equations can be

written as follows:

k=N

w(x) = z f U (x, §)P,(§)dr(§) (2.19)
k=1T}
k=N

4=y [T OREOEE 2.20
k=1r,

2.4.3.Variational Boundary integral equation method

In this method the principle of minimum total potential energy is used to
construct the boundary integral equation to solve the 2D elasticity problem.
The total potential energy I (with the absence of body load) can be written as
follows [14]:

1
M) = j ~ 0y (e ()A0) - j (0w () dr () (2.21)

Q e
with boundary conditions
(2.22)
. (2.23)

Using Lagrange’s multiplier and let:
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ui=ﬁi0nF

Therefore, Eq.(2.21) can be written as:

1
M(u;, @, 4;) = fzo'ij(Y)gij()’)dQ(Y)
)

+ [ 1@ - u@)are
r

- [amawar

It

With boundary conditions

Uu; =ﬁi on Fu

(2.24)

(2.25)

(2.26)

Minimizing Eq.(2.25), it is found that Lagrange’s multiplier must be equal to

the traction on the boundary £; i.e.:
Ai = fi on Fu

So, EQ.(2.25) can be written as follows:

. 1
M, @;, t;) = .[Eti(x)ui(x)dr(x)
T

+ ] GO (0) — () dr ()

r

1
- jEi(x)ai(x)dl“(x)—JEaij,j(y)ui(y)dﬂ(ﬁ

I Q

With boundary conditions

u; = ﬂi on Fu

So, minimizing Eq.(2.28) the problem is solved.
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Now to minimize Eq.(2.28) , approximate the displacement and traction in the

domain and on the boundary as follows:

In the domain:
k=N

G = ) U609 (2.30)
k=1
k=N

GO = Y T, 6 () (231)
k=1

On the boundary the same approximation is used as in the direct boundary
integral equation.
Substitute by these approximations in Eq.(2.28) the following equation is

obtained:

N, 0, £) = 2 OO0 OO}
— (ECOYIG; (o, O (O} + (L)Y L) u(x)}y  (2:32)

— {u@)}{T(x)}
Where;
[Q(x, E)]anxan = j [U5 (e, O[T (x, ©)] " dr (x) (2.33)
:
1606 awean = [ [0 O]9, dr o) (2.3
:
(15,0 = [ [B:C[0] ar ) (2.35)
!
(0, = [ B @IE G (2.36)
!

Where, ¢, is a set of relevant shape functions.
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Minimizing Eq.(2.32) and rearranging, the following system of equations is

obtained:
(FOOY = [K (r, OLu () (2.37)
Where;
[KCx, Olanxan = [Ri; (O] [050, O][Rs; (x, ©)] (2.38)
R, Olawson = ([6506O]7) LG (2.39)
(F(0} = (T (0} (2.40)
And,
B ©hwa = ([65@ O] LI (2.41)
© = [656,0] ' [0506. ] ([65 . OT) LG (2:42)

Where, [K(x,&)] represents the stiffness of the domain, which is symmetric,
unlike the stiffness obtained from the direct or indirect boundary elements
which is unsymmetric. {F (x)} is the nodal force vector.

Now on solving Eq.(2.37) the displacement and the nodal force and also the

traction on the boundary is obtained.

2.5. Eshelby equivalent inclusion theory

Eshelby equivalent inclusion theory [16,42] is used to solve problems with
inhomogeneities Fig.(2.3). In this theory the real problem is replaced by a
homogeneous problem and at the location of inhomogeneities a prescribed
strain (eigenstrain &5) is applied to take the effect of the difference in

properties. The location at which the eigenstrain is applied is called equivalent

inclusion.
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Fig.(2.3): Inhomogeneity and its equivalent inclusion problem

According to this theory the disturbance in strain due to the difference in
properties (which is called constraint strain £59) at inclusion number | is

calculated as follows [16,42]:

e50" = Spmped) (2.43)

Where, Simjk” is the Eshelby tensor relating the constrain strain at inclusion

number | with the eigenstrains at the other inclusions around it. Eshelby tensor
depends on the inclusion geometry and the problem elastic constants.
To get the eigenstrain, the stresses inside the inhomogeneity and inside the

equivalent inclusion are equated as follows [15]:
applied col\ _ applied col I
Cijra (Skl + & ) = Ciji (Ekz ten — e ) (2.44)

Where, C';, is the elasticity tensor for the inhomogeneous part, and efP?"*? is

the strain due to the applied load.
Substituting Eq.(2.43) into Eq.(2.44) the following relation can be obtained:

ol
giajppued = _Sijkluglgl] + (G + Cz)&pjl - ngr?zml(sij (2.45)
_A+(1+0)B .46
'7 B(A+B)
A—CB
C2= ooy (2.47)
B(2A + B)
B=1--! (2.48)
E
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A=C—ﬂ( id ) (2.49)

c=_" (2.50)

Where, E; and v; are the material Young’s modulus and Poisson’s ratio of
inclusion number 1.

The matrix form of Eq. (2.45) could be written as follows:

{Sapplied}szvozm = [eklanorxanvor{e®}anorx1 (2.51)
Where, NOI is the number of equivalent inclusions in the problem.
The constraint displacement and strain from Eshelby theory is as follows:
I=NOI
ul(.X) = z Sﬂcl faijk(x, E)d‘Q‘I(E) (252)
I=1 Q
( I=NOI
| ' [Opn(eOa0,© ez
Eim (%) = 4 I=1 Q; (2.53)
1
lm [(6 —8v)el, — (1 —4v)efbim] x=§&
1
Oijmic(§, %) = an(1 = V)12 [20(7serm8ij + 7 j7m 8 + 747 Srem
+ 7’,i7”,k5jm) + 2(1 = 2V)173 0k + 2774 6im (250

— 81T T
+ (1 - 2V)(6l]5km + 5ik6jm - 6]k61m)]
&/ 1s assumed here to be constant inside the inclusion.

2.6. Continuum Damage Mechanics

Continuum Damage Mechanics CDM is the science which studies the

deterioration of the material under the action of loads until fracture occurs.
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Unlike Fracture Mechanics which study the material with the presence of a
crack.

In CDM the material deterioration is studied by decreasing the elastic tensor of
the material by Damage variable (D) which depends on the material behavior.
In this thesis the damage is considered isotropic, so D is a scalar quantity (D=0
for undamaged material and 1 for fully damage material). According to the

CDM the stress strain relation becomes [43]:

0ij = (1- D)Cijklgkz (2.55)
The damage growth is governed by the following activation function [25]:

f(e*) = (&) — ehax (2.56)

Such that, f(¢*) < 0and &, =0 and,

e = \/(g1)? + (&,)? (2.57)

where, ;45 1S the maximum effective strain measured in the medium, £* is the

effective strain and ( ' ) is a time derivative. &; and &, are the principle strains,

and (g;) denotes the positive values of the strain.
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Fig.(2.4): Different inclusion patterns and the interaction radius.
The above damage approach is called the local damage approach. To extend
such an approach to the nonlocal approach (the integral type), a certain variable

f(X) is replaced by its nonlocal counterpart fnl(Xp) [27]. In this thesis two

approaches are used for the nonlocal integral type, the first one is averaging the
strain [25], and the second one is averaging the damage [49]. The averaging is

done as follows:
fru(Xp) = j a(r)f(X)dS / f a(r)ds (2.58)
S S

in which a(r) is the weight function, where it is chosen here to be the bell-

shape function as follows:

2
7"2
0 r>R

where, X, is the coordinate of the investigation point, at which the nonlocal

strain or nonlocal damage is calculated and X is the coordinate of any arbitrary
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point inside a circle of radius R (the interaction radius, which is a material

property) as given in Fig.(2.4).

The integration in Eq.(2.36) is approximated as follows:

NC NC
fnl(Xp) = z O‘(ri)f(Xi)/z O((Ti) (2.60)
i=0 i=0

where NC is the number of points inside the circle as shown in Fig.(2.4).

2.7. Coupling Eshelby theory with DBIEM

In order to solve a problem with inhomogeneities using the BEM the problem
domain needs to be discrteized to define different elastic properties. This
approach makes the BEM losses its main advantage of boundary only
discretization. In 2008 Hang et.al [19-21] coupled the DBIE Eq.(2.11) and
Eq.(2.14) with Eshelby equivalent inclusion theory Eq.(2.52) and Eq.(2.53) to
get the following:

5@y = [ U056 = [ 15,0 (940
r r
wor (2.61)

+ 7 0 [ 0 x)a0 )
=1 e

£ (E) = j Ui (6,30t (0T () — j T (€ 0w (AT () +

r r
([ 2.62
l 2 Eﬁcl J Oijrkm (x,£)dQ;(§) x # & (2.62)
I=1 Q
8(1 _ V) [(6 - 8U)£iom - (1 - 4U)£ﬁ6im] X = f
|G ]{ti} — [Hij[{w} + [Bine){gfi} = {0} (2.63)
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{eim} = [Gim){ti} — [Hijm]{w} + [Bijim|{£5% (2.64)

To Solve Eq.(2.63) the eigenstrain is needed first which can be obtained using
Eq.(2.45) and Eq.(2.14). These equations can be solved iteratively as in [19-21]
or directly as in [55]. The advantage of this approach is that the system of
equations is decreased.

2.8. Conclusions

In this chapter a brief introduction to different approaches in the boundary
element method (Direct, indirect and variational boundary integral equations),
which will be used in the three coming chapters to solve problems of
inhomogeneities and damage. Also, Eshelby’s theory is discussed and how it is
coupled with the direct boundary integral equation to solve problems with
inhomogeneities. It will be shown in the following chapter how Eshelby theory
can also be coupled with the indirect BIE to solve problems with
inhomogeneities.
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Chapter 3: Indirect BIE with inhomogeneities

3.1. Introduction

In this chapter Eshelby equivalent inclusion theory is coupled with the
FSM, where the advantage of no meshing on the boundary or inside the
domain is gained. The Eshelby theory is being coupled as a set of particular
solutions where analytical solutions are employed for circular inclusions
[23,24,30,42], so there is no domain discretization and all involved
integrations are carried out analytically and closed form solutions are
employed. Finally, the solution algorithm is performed using two

approaches i.e. the direct approach and the iterative approach.
3.2. Fictitious Stress Method

Consider a 2D elasticity problem, with N points are placed on the
boundary (Fig.(3.1)). The distance between these points is defined as the
point interval; along which the boundary normal and tangential directions
are defined. The displacements and tractions on the boundary can be

computed using the fictitious stress method, as follows [12]:

- pJ _ - =
u = ZS_G [(3 — 4v)cosyF,; — y(sinyF, — cosyF;)]

(3.1)
pJ o _
+ >5C [(3 — 4v)sinyF, — y(cosyF, + sinyF;)]
PR/ e o
w,i = o [—(3 — 4v)sinyF; — y(cosyF, + sinyF;)]
(3.2)
P’ oo =
+oo [(3 — 4v)cosyF; + ¥(sinyF, — cosyF3)]
. pJ _ =
ts' = 5= 13 = 4v)cosyFy — y(siny F, — cosyFy)]
(3.3)

B’ _ _ _
+ % [(3 — 4v)sinyF, — y(cosyF, + sinyF;)]
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P _ _ _
t,t = ZS_G [F, — 2(1 — v)(cos2yF, + sin2yF;)

— y(cos2yF, — sin2yF)]
j (3.4)
B/ _ o _
+ A [F3 — (1 — 2v)(sin2yF, — cos2yF;)

+ y(sin2yF, + cos2yFs)]

where, (recall Fig.(3.1)) u! , u, and t! , t! are the displacements and
tractions at point i in direction s* and normal direction n*. u! , u! and t!
t! are due to fictitious stress P,/ and B,” distributed on the interval at point j
in the direction s/ and normal direction n’. ¥ is the y-coordinate of point i
with respect to point j mesured in the local direction of the interval at point
j,andy = Bt — B/, where, B¢ and B/ are the inclination angle of s* and s/to

the horizontal. The terms F; to Fs are given as follows [12]:

Fr=-M [37 (ta"_l (,g f a) ~ tan™ (f f a>>

(3.5)
1 _ B 1 _ 3

-3 E—a)in((x —a)* +y3) + E(x + a)in((x + a)? + y2)
F, = %M[ln((f —a)? 4+ 99 - (x+ a)In((x + a)? + 2] (3.6)
= () - ()
F = Y _ y 3.8
F4_M[(f—a)2+372 (3?+a)2+372] 59)
_ X—a XxX+a

_ _ 3.9
FS_M[(}Z—a)2+372 (3?+a)2+)72] ¢9

where,
1

- - 3.10

M= ra—v (3.10)
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In which, x is the x-coordinate of point i with respect to the point j mesured
in the local direction of the interval at point j, and a is half the length of the
interval at point j. On suitable substitutions from Egs.(3.5-3.10) into
Egs.(3.1-3.4), the boundary displacements and tractions can be rewritten as
[12]:

N N
i = z B P + z B.,Up,J (3.11)
j=1 j=1
N N
w,i = z B, UpJ + z B,.UpJ (3.12)
j=1 j=1
N N
£l = ZASSUPSJ' N ZAsnianj (3.13)
j=1 j=1
N N
£ = ZAnSijPSj N ZAnnianj (3.14)
j=1 j=1

where, B/, B, , B, and B,,,Y are the influence matrices obtained from
Egs.(3.1,3.2) for displacements, and Ay, A.,Y, A,s” and 4,," are the

influence matrices obtained from Eqs.(3.3,3.4) for tractions.

B FSM points

L]

g T A A A A

Fig.(3.1): A general problem with FSM points and associated intervals.
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The matrix form of Egs.(3.11-3.14) could be written as follows:

{{u}zmq} [B] 2N><2N] (P} onnce (3.15)

{t}anx1 [Alonxzn

Solving Eq.(3.15), the fictitious stress {P} is computed, then one can substitute
into EQgs.(3.11-3.14) to obtain the unknown boundary displacements and
tractions. Also, internal displacements can be obtained from Eqgs.(3.11,3.12),
and the internal strains or stresses can be obtained by superposition after
differentiation of Egs.(3.11,3.12) as demonstrated in section 3.6.

3.3. The proposed FSM with inhomogeneities
In this chapter, Eshelby’s equivalent inclusion theory is coupled with the
FSM to model the inhomogeneity problems. The problem is solved by
dividing the solution into complementary and particular solutions
(Fig.(3.2)). The particular solution is obtained from Eshelby’s theory in
infinite domain. The complementary solution is computed as a later step
using the FSM after modifying the relevant boundary conditions. Therefore,

the problem final displacements and tractions could be written as follows:

w,t = ufni n ufnl (3.16)

tl = t50 4+t (3.17)

i i . .
where, u$,' andub,” are the complementary and the particular solutions of

displacements at point i in x and y directions, respectively. Also, t,f;;i and

tﬁll are the complementary and the particular solutions of tractions at point i
in X and y directions, respectively. The particular solutions could be solved
first as follows (assuming the eigenstrain to be constant inside the equivalent

inclusion):

2

o1
ufn f OmqdQ g (3.18)
Q;

La;

~.
1l
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) NOI
trz:ll = z f O_mkqlnkd.Q gc([)l] (319)
J=19;

where, a;j;, and oy, are defined in chapter 2. Without losing the generality

in this thesis, the equivalent inclusion shape is taken in this work to be

circular. The integrals in Egs. (3.18 and 3.19) are computed as follows:

NOI
pl_ i J
ur = Z QY &8, (3.20)
j=1
NOI
pi_ ctj J
j=1

The expressions of Q q and sy , are derived in analytical form

mkq
[23,24,30,42] and is listed in Appendix A, besides Eshelby’s tensor.

Combining Egs. (3.11-3.14) and Egs. (3.20 and 3.21) using Egs. (3.16 and
3.17), the total displacements and total tractions could be written as follows:

Uyt = (ugicos(90(m —-1)-pH + uflisin(90(m —-1)— ,B’i))
NOI (3.22)

+ Z qul ql

t, i = (tscicos(90(m — 1) — BY) + t'sin(90(m — 1) — ﬁi))
NOI (3.23)

+ 2 qul ql

It should be noticed that Eqgs.(3.11-3.14) are defined in the local direction of
the interval at point i, therefore, Eqgs.(3.11-3.14) must be multiplied by the
transformation matrix for each interval to transform it in the global

directions be for combining with Egs. (3.20 and 3.21).
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Fig.(3.2): The solution concept of dividing the problem into complementary and particular problems.
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Equations (3.22 and 3.23) could be rewritten in a matrix form as follows:

{{u}zmq} [E]ZNXZN [Q]ZNXSNOI]{ {P}anx1 } (3.24)

{thaux1) [Alonxan  [Rlonxanord HeYanorxa

[B] and [A] are the same as [B] and [A] but after multiplying the rows
corresponding to each interval by the transformation matrix [T*], in which:
i i i
(ri] = |08 —sinf (3.25)
sinf'*  cosf!
In order to solve Eq. (3.24) the eigenstrain should be obtained. This is carried

out using Eq. (2.46), which needs first to obtain the applied strain. The applied

strain at the inclusion center is obtained as follows:

1 . |
lied lied lied
sglpp et = = [(1+ v)a;lpp v +v)g e 5ql] (3.26)

Where, the stress at the internal point i is calculated as follows [12]:
0t = PJ[F, + 2(1 —v)(cos2B’F, — sin2 B/ F;)
+ y(cos2B/F, + sin2 7 Fs)]

(3.27)
+B,[F; — (1 — 2v)(sin2B’F, + cos2B’F;)
+ y(sin2 B/ F, — cos2B' Fs)]
0yyt = P/ [2(1 — v)(sin2 B/ F, + cos2/Fy)
+ y(sin2 B’ F, — cos2/Fs)] (3.28)
+P,7[(1 — 2v)(cos2B/F, — sin2f’F;) — y(cos2BIF, + sin2B'F)]
0yt = BI[F, — 2(1 — v)(cos2/F, — sin2 ' F;)
— y(cos2B’F, + sin2 B/ Fs)]
(3.29)

+P/[F; + (1 — 2v)(sin2B’F, + cos2B’F;)
— y(sin2B’/F, — cos2B’Fs)]
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After substituting Egs.(3.27-3.29) into EQ.(3.26), the latter system can be

rewritten in a matrix form as follows :

{SappliEd}stm = [Z]3N01X2N{P}2le (3'30)

In order to solve the inhomogeneity problem, Eq. (3.24) together with Eq. (3.30)

and Eq. (2.52) is needed to be solved. In this chapter, two approaches are

developed, i.e. the direct approach and the iterative approach.

3.4,

The proposed iterative approach

In this approach the solution procedure is carried out in iterative way as

follows:

1.

Solve Eq. (3.15) to compute the fictitious stresses.

2. From Eq.(3.30), compute the strain at the center of the inhomogeneities.
3.
4. Substitute the computed eigenstrain into Eq.(3.24) then compute the new

From EqQ.(2.51), compute the eigenstrain.

fictitious stress.
From EQ.(3.30), compute the updated applied strain at the equivalent
inclusion center.
Repeat from step (3) and calculate the eigenstrain until the difference
between two consecutive values of the eigenstrain is less than a prescribed

tolerance as follows:

{Error} = {°} — {e°} 1 (3.31)

max{Error} < tol, where (3.32)

I 1S the iteration number

Figure (3.3) summarizes the former steps in a flow diagram.
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Form [4], [B], [Z], [Q], [R],
and [ek]

V

Solve Eq.(3.15) and compute
the fictitious stress {P}

V

Substitute in Eq.(3.30) and compute the
strain {c} at the center of inhomogeneities

y

Substitute in Eq.(2.51) and
compute the eigenstrain {¢°} at
the equivalent inclusion center

V

Substitute by {€°} in Eq.(3.24) and
compute the updated {P}

V

Calculate {Error} (Eq.3.31) and
compute max{Error} (Eq.3.32)

v

If max{Error} >
tol

Substitute in Egs.(3.20-3.21) and compute
the unknown displacements and tractions

v

Substitute in Eq.(3.36) and compute
the internal strain

End

Fig.(3.3): A flow diagram of the proposed iterative approach.
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3.5. The proposed direct approach

In this approach the eigenstrain values are obtained directly without iterations.
From Eq.(2.45), and Eq.(3.26) the following relationships between the fictitious

stress and the eigenstrain are obtained:

1 1
_Sijklljglgl] + (C1 + Gl — Caehum 6y

(3.33)
= — [(1 +v)o; applled —-v(1l+ v)a,fﬁ,’flled U-]
Eq.(3.33) is then rewritten in a matrix form as follows:
[ek]3N01x3N01{50}3N01x1 = [Z]3NOI><2N{P}2N><1 (3.34)
From EQ.(3.24) and Eq.(3.34) the following matrix form could be written:
{U}zwx1 [E]ZNXZN [Q]ZNX3NOI (P}
{thavxa ¢ = | [Alanxan [R]2nx3nor {{80}} (3.35)
{0}31v01><1 [Z]SNOIXZN _[ek]3NOI><3NOI

Solving Eq.(3.35), the fictitious stress and also the eigenstrain are obtained.
3.6. Post processing

After solving the problem by either of the above two approaches, substituting in
Egs.(3.22 and 3.23) the unknown displacements and tractions at the boundary

are obtained.

The strain at the inclusion center could be computed as follows:

, ; i
e’ =g +eg (3.36)

With the following particular part:

NOI

Z S (3.37)
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and the corresponding complementary part:
1
eq =7 [(1+)o —v(1 +v)068] (3.38)

In which, a; is the complementary part of stress from Egs. (3.27-3.29).
3.7. Numerical examples

In this section five numerical examples are solved in order to demonstrate the
accuracy and validity of the proposed formulations. FSM points are placed on the
boundary of the problem and inclusion points are placed at the inhomogeneity
center i.e. no boundary or domain discretization is required. For the first three
examples direct approach is only used, and in the last two examples both the

iterative and direct approaches are used for the purpose of comparison.

3.7.1.Kirsch problem

In this example, the well-known Kirsch problem (large plate with small circular
void of radius R) as shown in Fig.(3.4) is solved. The analytical solution for
stresses is given in Appendix C. The material properties used is E=1 N/m? and
v=0.3.

Oo

AT

A 0 O

Fig.(3.4): Kirsch problem example 3.7.1
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The problem is solved using 12,18,36 and 76 FSM points and one point at the void

center. Figures (3.5,3.6) demonstrate the results of the stresses in X and y

directions, respectively. It can be seen that good agreement between the present

formulation solutions and the analytical solutions are obtained.

3.5 4
3 -
2.5 Analytical [58]
---©--- Present--(12 points)
. 2 A ---0- - Present--(18 points)
bx ------- A Present--(36 points)
15 1 --EF - Present--(76 points)
1 -
0.5 A
0 T T T T 1
0 2 4 r/R 6 8 10
Fig.(3.5): Stresses in the x-direction in example 3.7.1
0.45 4
0.4 A
0.35 A
0.3 A
Analytical [58]
0.25 A
- ---©---- Present--(12 points)
> 0.2 A i
© ---0--- Present--(18 points)
0154 1 WMmNe A~ Present--(36 points)
0.1 - --EF- Present--(76 points)
0.05 A
0 T -'-:-.:. S 36‘:_- ‘ﬂ“ --- 4
2 4 6 8 10
0.05 -

r/R

Fig.(3.6): Stress in the y-direction in example 3.7.1
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3.7.2.Square plate with single inhomogeneity

The square plate shown in Fig.(3.7) is considered in this example. The plate is
solved with different locations of inhomogeneity as shown in Fig.(3.7). Wu and
Yin [61] previously solved this problem using the direct boundary element
method, where quadratic boundary elements were used, and quadratic eigenstrain
approximation was assumed. The material properties of the matrix are E=10°
N/m? and v=0.25. Stiff and soft inhomogeneity are considered. The material
properties of the stiff are E=2x10°% N/m? and v=0.25 and for the soft one are
E=10° N/m? and v=0.25. The problem is solved under vertical load t=10* N/m.

FEETEEEI IR tJ/J/J/J/H:/M/J/J/J/
| |
| |
; 1im I R ) im | |
] 05m i
I I 0.5m N
1m im 3 i
| %.OB i
| |
10R 4 Rzo.osmIy
i Il X 15R} X
N N N/ N N /™
Case(1) Case(2)

Fig.(3.7): Square plate with single inhomogeneity in example 3.7.2
The problem is discretized using different number of FSM points 20, 52, 100 and

200 (the points are uniformly distributed along the four sides). Cases (1) and (2)

are solved with soft inhomogeneity. The stress o,,, along the vertical dashed line
is demonstrated in Figs.(3.8) for case(l) and stresses oy, and o,, are
demonstrated in Figs.(3.9,3.10) for case(2). In these figures o}, denotes the stress

in the homogeneous case.

Case (2) is solved again with stiff inhomogeneity. The stresses o, and o,,,, along

the vertical dashed line are demonstrated in Figs.(3.11,3.12). It is clear that there
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Is a good agreement of the present formulation results to those of reference [61]
although in ref. [61] 200 quadratic boundary elements were used. It is clear from
the figures that in case of soft inhomogeneity when it is away from the boundary,
only 52 points is enough to capture reasonable accuracy but when the
inhomogeneity is near the boundary more points should be used (100 points). In
case of stiff inhomogeneity, the distance from the boundary has less influence

than that of the soft one.

0.6 A REF. [61]
------ Present (20 points)

Center line of inhomogeneity

(

................. Present (52 pOintS)
(
(

0.4 1 —-—- - Present (100 points)
03 --A-- Present (200 points)
0.2 A
0.1 A
O T
0 1 2 3 4 5 6 7 8 9 10
y/R

Fig.(3.8): Stress in the y-direction in example 3.7.2, case(1) (soft
inhomogeneity).
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/‘:\ g 1.4 ---&---- Present (20 points)
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E %‘ f --A-- Present (200 points)
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c
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_____
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0 1 2 3 4 5 6 7 8 9 10
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Fig.(3.9): Stress in the x-direction in example 3.7.2, case(2) (soft
inhomogeneity).

REF. [61]

----8---- Present (20 points)
e Present (52 points)
—-—-- Present (100 points)
9O --A-- Present (200 points)

Fig.(3.10): Stress in the y-direction for example 3.7.2, case(2) (soft
inhomogeneity).
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Fig.(3.11): Stress in the x-direction for example 3.7.2, case(2) (stiff
inhomogeneity).
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S REF. [61]
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E 8 e Present (52 points)
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Fig.(3.12): Stress in the y-direction for example 3.7.2, case(2) (stiff
inhomogeneity).
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3.7.3.Square plate with two inhomogeneities
The square plate in example 3.7.2 is resolved herein with two inhomogeneities.
These two inhomogeneities have the same radius as shown in Fig.(3.13) and has

different radii as shown in Fig.(3.14).

| |
tV v b Vv by b v bV R R R
| |
| |
. 1m ' > < lm : »
:‘ 0.5m :‘ 0.5m
im : Im :
AY y
R=0.05 2& R=0.05m 5 95R
N L P
VANAN WANGEAN AN A LS AN A
Case(1) Case(2)
Fig.(3.13): Square plate with two equal diameter inhomogeneities in example
3.7.3.
| |
R R R R R R
| |
| |
. 1m : N . : 1m N
L 0.5m N L 0.5m N
| 'm |
im | I
Ay 0.IR y
R=0.05m 12R = ¢.1R R=0.05 m-—
) _(gf I:l.ZR
‘ 1.5RI GE D x ‘ 2R} x
ANAS AN AN AU S AN\
Case(3) Case(4)

Fig.(3.14): Square plate with two unequal diameter inhomogeneities in
example 3.7.3.
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The same FSM points distributions in example 3.7.2 is reused herein. The problem
is solved with the stiff inhomogeneity property, and the results are compared with
those solved by Wu and Yin [61] using the DBIEM. Figures (3.15-3.26)
demonstrate the stresses oy, and o,,, for cases 1, 2, 3 and 4 (recall figures 3.13 and
3.14 for case definitions). It is clear from the figures that in case of equal diameter
inhomogeneities, only 52 points is enough to capture good accuracy. In case of
different diameters inhomogeneities, more points are needed (100 points) to reach
a reasonable accuracy.

0.4 4
0.35 A
0.3 A
REF. [61]
0.25 A ---=---- Present (20 points)
=, 02 - N0k Present (52 points)
L B, —-— - Present (100 points)
¢ 0.15 A = --4-- Present (200 points)
O'®
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0.1 1 = 3
 —
[}
0.05 - = § 0 Tee, TR
ol < e
g . TEmag T
0 T T T T = e —
-a- - .
1 2 3 4 5 6 7 8 9 " qp
-0.05 -

y/R

Fig.(3.15): Stress in the x-direction along the vertical dashed line (case 1) in example
3.7.3.
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Fig.(3.16): Stress in the y-direction along the vertical dashed line (case 1) in example
3.7.3.
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Fig.(3.17): Stress in the x-direction along the horizontal dashed line (case 1)
in example 3.7.3.
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Fig.(3.18): Stress in the y-direction along the horizontal dashed line (case 1)
in example 3.7.3.
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Fig.(3.19): Stress in the x-direction along the vertical dashed line (case 2) in
example 3.7.3.
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Fig.(3.20): Stress in the y-direction along the vertical dashed line (case 2) in
example 3.7.3.
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Fig.(3.21): Stress in the x-direction along the vertical dashed line (case
3) in example 3.7.3.
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Fig.(3.22): Stress in the y-direction along the vertical dashed line (case 3) in
example 3.7.3.
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Fig.(3.23): Stress in the x-direction along the horizontal dashed line
(case 3) in example 3.7.3.
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Fig.(3.24): Stress in the y-direction along the horizontal dashed line (case 3)

in example 3.7.3.
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Fig.(3.25): Stress in the x-direction along the vertical dashed line (case 4) in

example 3.7.3.
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Fig.(3.26): Stress in the y-direction along the vertical dashed line (case 4) in
example 3.7.3.
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50 FSM points

3.7.4. Tapered cantilever with voids
The tapered cantilever with voids shown in Fig.(3.27), is considered herein to test
the ability of the proposed formulation to model several voids as inhomogeneities.
In this example the present formulation results are compared to results of the
FEM. Also, the two solution approaches (direct and iterative) are considered. The

used material properties are E=10° N/m? and v=0.25.

0.5m 0.75m 0.75m 1m

0.875m 1A
> .
0.5m

0.5m

g\/ 0.5m

§>“y

Fig.(3.27): The tapered cantilever in example 3.8.
Two sets of FSM points are used to simulate the problem, 391 and 782 FSM points, along

the boundary of the problem (Fig.(3.28)). In the present analysis voids are treated as

10 N/m

TTT11

2m
0.75m
<

an equivalent inclusion with E=0. The problem is also solved also using FEM with
two discretizations 932 and 4045 four-noded quadratic elements as shown in
Fig.(3.29).

128 ESM points 256 FSM points

ONOR® O O O
O O

Fig.(3.28): The FSM points distribution in example 3.8.
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Fig.(3.29): The used FEM discretization in example 3.8.
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Figures (3.30-3.32) demonstrate the stresses oy, 0,, and oy, at section A-A
(recall Fig.(3.27)) for both approaches (direct and iterative) compared to that of
the FEM. Excellent agreements between results are observed. The deformed shape
is demonstrated in Fig.(3.33) compared to that of the FEM.
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Fig.(3.30): Stresses in x-direction along section A-A in example 3.8.
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Fig.(3.31): Stresses in y-direction along section A-A for example 3.8.
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Fig.(3.32): Shear Stresses along section A-A for example 3.8.
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Fig.(3.33): The deformed shape in example 3.8.
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3.7.5.Bar with inhomogeneities

The bar containing array of inhomogeneities shown in Fig.(3.34) is considered in
this example. The purpose of this example is to compare the difference in
computational time between the direct approach and iterative approach with
respect to that of the FEM. The bar contains 1729 circular inhomogeneities. The
material properties of the matrix are Eo,=10° N/m? and v=0, and for the

inhomogeneities is E=aE,, where « takes values between 0 to 0.8.

10m
N <
§> 1m N <
AN <
\\
N\ 0.075m
\& Control volume of the bar
ONONONO)
0.075m

O O O O 0.025m

Fig.(3.34): The bar in example 3.9.
The problem is solved using the present formulation using 240 FSM points (100

points on the long sides and 20 points in the short ones). Also, it is solved using
the FEM using 256000 four-noded quadratic finite elements (FE) for sake of
comparison. Figure (3.35) demonstrates the used FE mesh for the shown control
volume in Fig.(3.34). It has to be noted that in case of voids (a=0), the number of
the used FE is decreased to 145344 elements.
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Fig.(3.35): The FE discretization of the control volume in example 3.9.

Figure (3.36) demonstrates the bar tip displacement for different a cases for both

direct and iterative approaches together with the corresponding FEM results.
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Fig.(3.36): The bar tip displacement for example 3.9.
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It is clear form Fig.(3.36) that the results of the present formulation agree well
with the results of the FEM. Figure (3.37), demonstrates the elapsed time of
calculation. It has to be noted that such values are computed using Intel(R)
Core(TM) i7-2630QM CPU@ 2.00 GHz computer.

The shown results of the FEM are obtained using commercial package with GPU
computing technology. It can be seen that the results of the present formulation
(which do not employ parallel computing) is comparable to the FEM. Therefore,
considering the present formulation with GPU or multicore will improve the

elapsed time dramatically.
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Fig.(3.37): Elapsed time of computation in example 3.9.
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3.8. Conclusions

In this chapter, the FSM as a meshless technique is coupled with the Eshelby’s
equivalent inclusion theory to model the inhomogeneity problem. Here, no domain
discretization was needed as the analytical solutions for circular inclusions were
presented. Also, only FSM points were distributed on the boundary to solve the
problem. Although constant distribution of sources was used and also constant
eigenstrain was assumed in the equivalent inclusion, the results demonstrated good
agreement with those of analytical solutions, the DBIEM and the FEM as
demonstrated in the numerical examples (Sec.3.7). Two alternative techniques
were presented for the solution, i.e. direct and iterative. It was demonstrated that
the computation time of the present formulation without parallel computing is
comparable to that of the FEM with GPU computational core. This concludes that
implementing parallel computing to the present formulation will speed it up

dramatically making it positioned for practical applications in materials.
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Chapter 4: Damage simulation in Direct BIE

4.1. Introduction

In this chapter a new explicit boundary element modeling for the nonlocal
damage is introduced. Despite the damage occurred inside the domain, the
problem boundary is only discretized. The change in the material properties
due to damage is introduced by coupling Eshelby’s equivalent inclusion theory
[16,19,20,42] with the direct boundary element equations. At any arbitrary
point when the internal strain exceeds the threshold strain, an equivalent
inclusion is inserted with a prescribed eigenstrain to model the damaged
material property due to damage level, making the damage be represented
explicitly. A finite-element like stiffness matrix is formulated from the
proposed coupled integral equations. Such a stiffness is obtained in a
condensed form on the problem boundary directly. The new system of
equations is nonlinear as material properties are changed with the problem
deformation. This system is solved using the load control secant algorithm
[48]. It has to be noted that, in the present formulation, no prior knowledge of
the damage locations is required. Some examples are solved to verify the
proposed formulation. Also, a parametric study on the parameters affecting the
results (number of boundary elements, inclusion diameter, inclusion pattern,

residual tolerance and maximum number of iterations) is done.

4.2. Boundary integral equation formulation

The displacement boundary integral equation for 2D elasticity containing (NOI)

non-homogeneities or equivalent inclusions (see Fig.(4.1)) is [19,20]:
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e () = f U (€, 1)t GO dr (x) — f T3 (6,0, (T (x) +

r r
[=NOI (4.1)
> ) [ il xan )
I=1 Q

In this chapter, the introduced circular inclusions are considered to be small in

size, hence the domain integral in Eq. (4.1) is computed as follows:

I=NOI [=NOI
z gﬁc(xl) fai?k(z,xl)dﬂl(xl) = Z SJ%C(XI)UL'?R(E’XI)AI (4.2)
I=1 QI I=1

Where, A, is the area of inclusion number 1.

The boundary integral equation for the strains as in chapter 2:

() = [ U604 00406 = [ 15600 +fin(® a3
r r
The new kernels Uy}, and T}, are as given in chapter 2. When the strain &;,,, (£) is

calculated outside the inclusion i.e. & & Qy, fim (&) could be computed as follows:

I=NOI

fin® = D ) [ 0362080 (4.9
O

I=1

The expression of the new kernel 0;,,, ;. (§,%) is also as given in chapter 2. Similar
to Eq. (4.1) the domain integral in Eq. (4.4) is computed as follows:

I=NOI

fin@® = ) )0 & A, (45)

I=1
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On the other hand, when the strain ¢;,,(¢) is calculated at the center of the

inclusion i.e. (¢ € Q;), the term f;,,,(¢) could be computed as follows [7]:

[(6 —8v)el,—(1 — 4v)e[}6im] (4.6)

1
fim () = 81—

Where, v and §;,, are Poisson’s ratio of the domain and the Kronecker delta

symbol, respectively.

For the matrix [ek] (see EQ.(2.52)) it will be approximated by eliminating the

inclusion-inclusion interaction.

[ek];x3 is defined for one inclusion as follows:

Ci — S1111 —251112 =0 — S1122
1
[ek] = —S51211 —— 251212 —S51222 (4.7)

B
—C1 = S2211 —252212 C2—S52222

in which, Cy, Cz, B, A and C are as given in chapter 2 Eqs.(2.47-2.51)

4.3. The proposed nonlinear matrix equations

The basic idea of this chapter is to represent the domain stiffness degradation
during loading by inserting virtual inclusions at damaged places. Then the non-
homogeneous problem is converted to homogeneous one via Eshelby’s
eigenstrains. These eigenstrain values are varying during loading resulting in a

nonlinear behavior of equations.

In this section the BIE (recall section 4.2) is rewritten in a form to facilitate
applying the proposed idea. The discretization is carried out on the problem
boundary, the domain is covered by investigation points (see Fig.(4.1)) at which

the strain is calculated and checked to decide whether the material is damaged or
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Fig.(4.1): The actual and the discretized problems.

69

Investigation

points



not. If an investigation point is damaged, a small virtual circular inclusion is

inserted.

The problem is discretized into N boundary nodes, NE boundary elements
(without losing the generality, quadratic boundary elements are used). At a certain
damage level with a number of inclusions indicated as NOI, Eqg. (4.1) could be

rewritten in a matrix form as follows:

[Gif ©, X)]ZNX6NE{tj (X)}6NE><1 N [Hij ¢ X)]szzN{uf (X)}Zle

+ [Byj(§, %) = {0}t (4.8)

2Nx3N01{8ﬁ‘}3N01x1

Where [G;;], [Hi;] and [B;j, ] are well known influence matrices.

In a similar way, Eq. (4.3) could be rewritten in a matrix form (without the

eigenstrain term) as follows:

applied ~
{gim(E)}3%%1x1 = [Gijm(fr X)]3NOI><6NE{tj(X)}6NE><1
(4.9)
~[Him &, X)]3N01x2N{uj (X)}Zle
Where [Gyj,,] and [H;j, ] are the derivative of the influence matrices.
Substituting from Eq. (2.52) into Eq. (4.9), gives:
{efcdanoixt = [ekimulsnorxanor ([éijm(f: X)]3NOI><6NE{tj(X)}6NEX1
(4.10)

- [Hifm (7 X)]31v01><21v{uj (x)}Zle)

Substituting from Eqg. (4.10) into Eqg. (4.8) and rearrange, gives:

70



([Gil (SZ: x)] 2NX6NE

-1 —
+[Bie &, X)]zzvxszvoz[ kqmjk]3NOIx3NOI [Gam &, X)]3NOI><6NE)

{6560}, oy = (Ha G 0 onson +[ B €], D

[ekamitlaworcanor [Fam (€ 9, yoran) (509, = OFewar

Introducing the following transformation matrix [L]:

Ly = | #1699, dreo) (4.12)
i

which transforms the traction vector to concentrated load vector [3] where, ¢ is a
set of relevant shape functions. Multiplying Eq. (4.12) by Eq. (4.11) and rearrange,

it gives:

{Fi(®}anx1 — [Kij(f; X)]ZNsz{uj(X)} = {0}2nx1 (4.13)

2NXx1

where,

{F;(x)},y is the equivalent force vector and is given by:

{Fi(®)}anx1 = [Lij(X)]ZNXGNE{tj(X)}6NEx1 (4.14)
and [Kij(f, x)]ZNXZN Is the equivalent stiffness matrix and is given by:
[Igl(flx)]ZNsz [ ]l]ZNX6NE([ ll(g X) 2NX6NE +[Bl]k(f )]2N><3NOI

- - - (4.15)
[ekqmjk]3N01><3N01 [qum & X)]3N01x6NE) '

([Hil (E' X)]ZNXZN + [Bijk(€: X)]

2NX3NOI

71



-1 —
[ekqmjk]gmegNo[ [qum (f’ X)]3NOI><2N)

It can be seen that despite the existence of damage inside the domain, Eq. (4.13)
represents stiffness equation similar to that of the FEM with a boundary-only
discretization. This equation could simulate the damage and could be solved in a
similar way to that of the FEM. Consequently, using Eq. (4.10) the eigenstrain at
the inclusions could be computed. Hence, using Eg. (4.3) the strain at the internal

points could be computed.

4.4. The proposed incremental iterative approach

Tracing a problem damage requires the solution of Eq. (4.13) which is a nonlinear

set of equations. In this chapter the secant algorithm [48] is used for its solution.

AF (Load)
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AF;

u (displacement) -

7

Fig.(4.2): A load-displacement curve showing the secant algorithm.
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Consider the nonlinear load-displacement curve shown in Fig.(4.1), the solution

procedure is described as follows (given that the counter (i) represents the current

number of the nonlinear iterations):

1
2
3.
4

©

Discretize the boundary of the problem into elements.
Define the investigation points to cover the overall problem domain.

Divide the total load into increments.

applied

At each load increment (j), the applied load {F};

is computed as follows:

(FYIPPied = (FYPRIed 4 (AR} (4.16)

Where, {AF} is the load increment.

Use Eq. (4.13) to compute the unknown displacement {u,}.
(FYPPIe = (K] {uy) (4.17)

Compute the strain Eq. (4.9) and the equivalent strain Eq. (2.57) according to
the used damage model (see Appendix B) at all investigation points.

Compute the maximum value of the equivalent strain &;,,, of the undamaged
investigation points.

In this step the value of the occurred damage is computed via one of three
ways:

Way 1 (Damage is computed based on local strains):

In case of &, > €p (Where g, is the threshold strain, see Appendix B) insert a

small virtual circular inclusion at this investigation point, with a Young’s modulus

equals to:

Eyew = (1 = D)E, (4.18)
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Where, E, is Young’s modulus of the undamaged problem, D is the scalar damage
variable representing the ratio of the area damaged in the material (D is calculated

according to the assumed damage model, see Appendix B).

e Way 2 (Damage is computed based on nonlocal strains):

The nonlocal strain at each investigation point is computed by considering all the
points inside a circle of radius equals the interaction radius R. Hence, the average
of all strains computed at all points inside this circle is computed (recall Fig.(4.1)).
The maximum equivalent strain ¢,,,, 1S computed at the undamaged investigation
points.

In case of &, > €p , @ Small equivalent circular inclusion is inserted at this
investigation point. The damage variable is computed at the inserted inclusion and
for other previously damaged points (if any). modified Young’s modulus due to
damage is computed in a similar way as Eq.(4.18):

e Way 3 (Damage is computed based on nonlocal damage):

The maximum equivalent strain &,,,, IS computed at all undamaged investigation
points. In case of &, > €p, @ small equivalent circular inclusion is inserted at
this investigation point. The damage variable is then computed at the inserted
inclusion and for other previously damage points (if any). The nonlocal damage is
computed for the damaged points and for all points inside the circle of radius R
(recall Fig. (1)), then the modified Young’s modulus due to damage is computed

in a similar way as Eq.(4.18).

In case there are two points having the same ¢,,,, (i.e. cases of symmetric
problems) two virtual inclusions are placed simultaneously with the same Young’s
modulus as in Eq.(4.18). Otherwise, if &,,,, < &p and there is no damage at all
investigation points, the load is increased (another load incrementis added) in

other words, jump to step 4.

74



9. Compute the updated stiffness [K]](.i)(by rebuilding Eq. (4.15)) and compute

the updated force vector as follows:
AP = kP (4.19)

10. Compute the force residual vector {Res} due to the change in the problem

stiffness resulting from the occurred damage, as follows:
{Res} = {F}PP1e — (F}® (4.20)

11. Compute the maximum value of {Res} to be denoted by Res_max. In case of
Res_max > tolerance (it has to be noted that the tolerance is going to be
chosen in the examples in section 4.6, and its effect will be demonstrated),

continue to step 12 otherwise jump to step 16.

12. Compute the change in displacement {Au}j.i) due to the residual force vector

{Res}, and the change in strain {As}f.i) from Eq. (4.3):
. o —1
) = ([K1”)  {Res;} (4.21)

13. Compute the total displacement {ut}ﬁ.i), and total strain {et}g.i) at each

damaged point, as follows:
= w7 + (augf? (4.22)
e} = (e} + {ae}) (4.23)

14. Modify the damage variable according to the modified total strain in Eq.(4.23)
and then compute the modified Young’s modulus from Eq.(4.18).
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15. Repeat steps from step 9 until the numerical value of the maximum force
residual Res_max is within the chosen tolerance. In other words, jump to step
9.

16. Check the undamaged points: if there is no other point with £* > &, increase
the applied load by {AF} (apply another load increment) and repeat from step
4, otherwise if there is other point with €* > &, jump to step8.

17.1n case the number of iterations (NI) reaches its maximum value (Nlmax, a
chosen number will be demonstrated in the examples in section 4.6) for the
secant algorithm and Res_max > tolerance, decrease the load increment, in
other words, use one half of the load increment (j): and repeat the load

increment starting from step 4.
1
{AF}; = E{AF}j (4.24)

Hence, repeat steps starting from step 4.

This procedure is repeated until the problem reaches a stable damage pattern
under a certain load or reaches numerical instability, regardless, increasing the
number of nonlinear iterations or increasing the used tolerance level. Figure

(4.3) demonstrates a flow chart that summarizes the above procedures.
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Fig.(4.3): Flow chart of the proposed incremental-iterative approach.
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4.5. Visualizing the damage patterns

A Matlab code is done by the author to visualize the damage pattern. In this
code the coordinates of the center of the inclusions are entered with the radius
defined and the corresponding damage variable. The program draws a circle at the

given points with a color corresponding to the damage variable value.

%A program to draw Damage pattern
disp('A program to draw Damage pattern')
NON=input ('Enter number of nodes: ');
NOI=input ('Enter number of inclusions: ');
clear nodalcoor;clear IDa;
nodalcoor=load('coor.txt');
IDa=load ('Dcoor.txt");
plot (nodalcoor(:,1),nodalcoor(:,2),'k")
Xmax=max (nodalcoor (:,1));
Ymax=max (nodalcoor(:,2));
hold on
for i=1:NOI
if IDa(i,4)>=0 && IDa(i,4)<0.2 %blue
filledCircle([IDa(i,1),IDa(i,2)]1,IDa(i,3),1000,'b");
hold on
elseif IDa(i,4)>=0.2 && IDa(i,4)<0.3 %cyan
filledCircle([IDa(i,1),IDa(i,2)]1,IDa(i,3),1000,'c");
hold on
elseif IDa(i,4)>=0.3 && IDa(i,4)<0.6 Sgreen
filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,'g");
hold on
elseif IDa(i,4)>=0.6 && IDa(i,4)<0.8 %Syellow
filledCircle([IDa(i,1),IDa(i,2)],IDa(i,3),1000,"'y");

hold on
elseif IDa(i,4)>=0.8 && IDa(i,4)<0.9 %Sorange
filledCircle([IDa(i,1),IDa(i,2)]1,IDba(i,3),1000,[ 0.9100
0.4100 0.1700]); %%%%%%%%%%%%%%
hold on

elseif IDa(i,4)>=0.9 && IDa(i,4)<=1 %red
filledCircle([IDa(i,1),IDa(i,2)]1,IDa(i,3),1000,'r");

hold on
end
end
pbaspect ([Xmax, Ymax, 1])
hold off
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4.6. Numerical examples
In this section, three numerical examples are solved to investigate the validity
of the proposed formulation (the first is solved using local approach and the
other two are solved using local and nonlocal approaches). It has to be noted
that the allowable maximum number of nonlinear iterations is set to be 50
(otherwise, it will be stated) as such number is found to be enough to trace all
nonlinear steps. Throughout the numerical examples different parameters are
considered for:
1. Boundary discretizations.
2. The inclusion pattern (intersected or staggered as demonstrated in Fig.(4.1)).
3. Inclusion diameter.
4. The residual tolerance level.
5.

Maximum number on nonlinear iterations.

4.6.1 Fixed-Fixed beam

This problem is as shown in Fig.(4.4) and was previously solved by Pituba and
Lacerda [50] using the FEM. Mazars damage model is used (see the appendix
B). The material properties of the beam are E,=2.47x10*° N/m?, v=0.2, a=0.7
and b=8000 and £,=0.00067. The beam thickness is 0.2 m.

Pl 045m P

L

05m

oA

U

P 2.7m

<«

Fig.(4.4). Dimensions of the fixed-fixed beam in example 4.6.1.

[
»
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The problem is solved with local damage approach using 17 boundary elements
and with two investigation points patterns to allow inserting intersected or
staggered inclusions. For intersected pattern a spacing of 0.078 m is used. For the
staggered pattern a spacing of 0.0196 m is used. The problem is solved with a
sufficient tolerance level of a value within the range of 0.1% to 1% of the applied
load at each increment without any change in the results. The tolerance level is
increased near the failure to allow tracking further steps in the nonlinear load-
displacement curve as shown in Fig.(4.5).

The used inclusions are of diameter 0.11 m for the intersected pattern. Two
diameters are used for the staggered pattern, they are 0.0302 m and 0.02 m.

The computed nonlinear load-displacement curve at the point A (see Fig.(4.4)) is
plotted in Fig.(4.5) together with the results of Pituba and Lacerda [50].

The results in Pituba and Lacerda [50] are presented using finite elements
discretizations of 0.11 mm. It can be seen from Fig.(4.5) that the results of the
proposed model are in good agreement with the previously published results of
Pituba and Lacerda [50].

It can be seen that for the case of intersected pattern, numerical instability is
detected at a load of 60.8 kN. Hence the tolerance is increased to from 1% to 3%
to reach a load level of 62.1 kN then increased to 5% to reach a load level of 63.6
KN. Hence, failure is detected at load level of 63.6 kN. In case of staggered
pattern, the tolerance range from 0.1% to 1% was enough to trace all the nonlinear
curve to failure. Figure (4.6) demonstrates the predicted damage patterns for the

used two patterns (intersected and staggered) at different load levels.
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Fig.(4.5): The computed nonlinear load-displacement curve for example 4.6.1.
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Loadi= 40.5 kN

Uy=0.218 mm
Load,= 49.7 kN

Uy=0.326 mm

Loads=54.7 kN

Uy=0.461 mm uy=0.4 mm

Uy=0.577 mm uy=0.597 mm
Intersected pattern Staggered pattern

0.6 0.8 P

The damage scale (D) sk et
Fig.(4.6): The predicted damage patterns for example 4.6.1.
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The problem is solved again with different inclusion diameters. For the
intersected case, two diameters are considered, i.e. 0.16 m and 0.078 m. This
will produce double and half the inclusion size used before. For the staggered
case, the considered diameters are (0.0427 m, 0.0283 m) and (0.0214 m,
0.0142 m) for the double and the one-half inclusion size. In this example the
analysis is carried out with fixed tolerance level of 1%.

The load-displacement curve is shown in Figs. (4.7 and 4.8) for the intersected
and staggered cases, respectively. It can be seen from the figures that there is a
compatibility between the developed method results with those of the finite
element having the same size. However, change of inclusion size could slightly
affect the results in a similar way as the FEM, which is mentioned previously

in [25] for local damage models.
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Fig.(4.7): The load-displacement curve for example 4.6.1 with intersected inclusion patterns.
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Fig.(4.8): The load-displacement curve for example 4.6.1 with staggered inclusion patterns.
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4.6.2 Simply supported beam
In this example, a simply supported beam under concentrated load shown
in Fig.(4.9) is solved. This example was previously solved by Jirasek [25]
using the FEM and reconsidered by Zhang et al. [64] using the SBFEM. The
material properties are Eo= 20850428446 N/m? and v =0.2. The parameters of
the damage model (as in appendix B) are e, = 0.00009 and & = 0.005, and

lP

the interaction radius R = 8 mm.

100 mm

777 450 mm s
Fig.(4.9): Dimensions of the simply supported beam in examples 4.6.2.

The problem is discretized into 47 boundary elements. Intersected inclusion
pattern is used (see Fig.(4.1)) with diameter of 5 mm.

The load-displacement curves for the presented formulation using local (L) and
nonlocal (NL) (strain and damage) cases are demonstrated in Fig.(4.10). Table
(4.1) demonstrates the load level at which instability occurs with the
corresponding adjusted tolerance level. It should be noted that the tolerance
level is increased with the load level.

The previous results of Jirasek [25] are also plotted on Fig.(4.10) for the sake
of verification. As shown in Fig.(4.10), the case of nonlocal (using strain or
damage) can well trace the nonlinear curve in more efficient way than that of
the local case. The predicted damage patterns (contour maps) are demonstrated
in Fig.(4.11) for the local and nonlocal models at various load steps (recall

Fig.(6.10)), also the damaged areas (inclusions) are demonstrated in Fig.(4.12).
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Damage patterns obtained from [64], are also presented in Figs.(4.11 and 4.12)
for the sake of verification. It can be seen that in the local case, the damage is

localized in some points whereas in the nonlocal cases the damage is more

smooth.
Table 4.1 : Adjusted tolerance at different load levels in example 4.6.2.
Load level (N) Adjusted
Local Nonlocal (average | Nonlocal (average tolerance
strain) damage) level
4670.00 4880.00 4880.00 1%
4857.90 5200.00 5132.36 3%
4933.71 5270.00 5257.36 5%
4946.76 5319.20 6%
4966.21 5328.47 5382.36 7%
4989.13 5341.23 8%
5355.34 9%
5030.00 5370.09 13%
5384.62 15%
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Fig.(4.10): Load-displacement curve for example 4.6.2.
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Present Local uy=0.091 mm

Present Non-Local Strain uy=0.082 mm

Present Non-Local Damage uy=0.081 mm _ Reference [64] uy=0.090 mm

The damage scale (D) sk b1 i
Fig.(4.11): The predicted damage contour map for example 4.6.2 at load level of 4993.60 N.
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Fig.(4.12): The predicted damaged areas (inclusions) for example 4.6.2 at load level of 4993.60 N
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4.6.3 Simply supported beam with a notch

In this example, a simply supported beam with a middle notch, and subjected to
concentrated load, shown in Fig.(4.13) is solved. The problem was previously
considered by Jirasek [25] using the FEM and by Zhang et al. [64] using the
SBFEM. The material properties are Eo= 2x10° N/m? and v =0.2. The
parameters of the damage model (as in appendix B) are e, = 0.00009 and & =

0.007, and the interaction radius R = 4 mm.

'}

100 mm 5 mm
50 mmI H
450
< mm >

Fig.(4.13): Dimensions of the notched simply supported beam in example 4.6.3.

The problem is discretized into 68 boundary elements. Staggered inclusion pattern
is used (see Fig.(4.1)) with two diameters of 2.5 and 1.75 mm.

The load-displacement curves for the presented formulation using local (L) and
nonlocal (NL) (strain and damage) cases are demonstrated in Fig.(4.14). Table
(4.2) demonstrates the load level at which instability occurs with the
corresponding adjusted tolerance level.

The previous results of Jirasek [25] are also plotted on Fig.(4.14) together with
experimental results [25,58] for the sake of verification. As shown in Fig.(4.14),
the case of nonlocal (using strain or damage) can well trace the nonlinear curve in
more efficient way than that of the local case. The predicted damage patterns
(contour maps) are demonstrated in Figs.(4.15,4.17) for the local and nonlocal

models at various load steps (recall Fig. (4.14)). Damage patterns obtained from

91



[64] are also demonstrated in Figs. (4.15 - 4.18) for the sake of verification, also
the damaged areas are demonstrated in Figs. (4.16 and 4.18). The shown figures

demonstrated the good agreement with the results of reference [58].

Table 4.2 : Adjusted tolerance at different load levels in example 4.6.3.

Load level (N) _
Adjusted
Nonlocal Nonlocal
tolerance
Local (average (average
_ level
strain) damage)
1094.00 942.03 1281.99 1%
1155.00 3%
1182.55 1313.24 5%
1279.00 6%
1169.22 7%
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Fig.(4.14): Load-displacement curve for example 4.6.3.
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Load level=892.20 N

uy=0.038 mm uy=0.040 mm
Load level=1201.50 N

uy=0.065 mm uy=0.070 mm
Load level=1282.20 N

uy=0.088 mm Uy=0.098 mm
Present solution Reference [64]

0.4 0.6 0.8 1.

The damage scale (D): e
Fig.(4.15): The predicted damage contour map (Nonlocal damage) for example 4.6.3.
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The damage scale (D): sk b1 i

Fig.(4.16): The predicted damaged areas (inclusions) (Nonlocal damage) for example 4.6.3.



Load level = 892.20 N

uy=0.039 mm uy=0.040 mm
Load level = 1201.50 N

uy=0.065 mm uy=0.070 mm
Present solution Reference [64]

.6 0.8 1:

The damage scale (D) s et

Fig.(4.17): The predicted damage contour map (Nonlocal strain) for example 4.6.3.
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Load level =892.2 N

uy=0.039 mm uy=0.040 mm
Load level =1201.5 N

uy=0.065 mm uy=0.070 mm
Present solution Reference [64]
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Fig.(4.18): The predicted damaged areas (inclusions) (Nonlocal strain) for example 4.6.3.



4.7. Numerical discussion
In this section the influence of parameters that affect the solution is discussed.
The two previously solved examples 4.6.2 and 4.6.3 are re-considered herein by
varying the following parameters:
1. Boundary discretization
2. Inclusion pattern
3. Inclusion diameter
4. The residual tolerance level.
5

. Maximum number of nonlinear iterations

4.7.1.Boundary discretization

In this section different boundary discretizations are considered, i.e. 17 & 47
boundary elements are considered for example 4.6.2, and 38 & 68 boundary
elements are considered for example 4.6.3.

Figures (4.19 and 4.20) demonstrates the load-displacement curves for
examples (4.6.2) and (4.6.3) for local and nonlocal models, respectively. It can
be seen that problems having stress concentrations need more boundary

discretiztion.

4.7.2.I1nclusion pattern

In this section different inclusion patterns are considered, i.e. staggered and
intersected (recall Fig.(4.1)). Figures (4.21 and 4.22) demonestrate the load-
displacement curves for examples (4.6.2) and (4.6.3), respectively. It can be
seen from these figures that the used pattern affects the load-displacement
curve. Therefore, in general, for a certain problem it is recommended to carry

out the analysis using the two inclusion patterns (or in general more than one
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pattern). Hence, the modeler can figure out the problem nonlinear behaviour

based on the analyzed results.

4.7.3.Inclusion diameter

In this section different inclusion diameters are considered, in case of local and
nonlocal models. For example (4.6.2) a diameter 2.5 mm (5 mm previously
used) is used for the intersected pattern and, diameters (5 mm and 3.5 mm) and
(2.5 mm and 1.75 mm) are used for the staggered pattern. For example (4.6.3)
two diameters 1.2 mm and 0.84 mm (2.5 mm and 1.75 mm previously used)
are used for the staggered pattern and, diameters 2.5 mm and 1.2 mm are used
for the intersected pattern. The results are plotted in Figs.(4.23 and 4.24) for
example (4.6.2) and in Figs.(4.25 and 4.26) for example (4.6.3). It can be seen
that the results are affected by the decrease in inclusion diameter. Unlike the

nonlocal models, such results are sensitive in the local damage model.

4.7.4.Residual tolerance level

Examples (4.6.2) and (4.6.3) are re-considered using constant different
tolerance levels 1%, 3%, 6% and 10% to demonstrate the effect of the
tolerance level on the results. Example (4.6.2) and example (4.6.3) are solved
for the case of nonlocal strain and nonlocal damage, respectively. According to
the load-displacement curve shown in Figs.(4.27 and 4.28), when starting the
solution with a high tolerance level (for example 6%), the resulting curve is
more stiff. As the high tolerance level allow jumping to another load step
before developing the total nonlinear dispacement. So, it is recommended to
start first with small tolerance level and then increases it gradualy if unstable
results is detected. This exactly was demonestrated in the previous example
sections in tables (4.1) and (4.2).
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4.7.5.Maximum number of nonlinear iterations

The former two examples (4.6.2) and (4.6.3) are solved using NlImax equals 50.
When instability in the results is detected such a number is increased to 100, 200,
and 500. However, such an increase does not affect the solution. Hence, it is
decided to increase the tolerance level instead (as presented in the former

subsection).

4.6.4 Conclusions

In this chapter a new explicit boundary element modeling for the nonlocal damage
was introduced. The solution requires boundary only discretization. If the strain
exceeds the threshold strain at any point, an equivalent inclusion is placed to
simulate its damage. The Eshelby’s theory was coupled with the direct boundary
integral equations to model the introduced equivalent inclusions. A finite-element
like stiffness matrix is formulated and obtained directly in a condensed form along
the problem boundary. In the developed approach there is no need for a prior
knowledge for the damage zone in the problem. The present formulation is a
boundary-only formulation and stretches the BEM to another era in nonlinear
applications. The proposed idea was implemented in a detailed incremental-
iterative load control procedure via computer code.

It was observed in this chapter that if instability was detected increasing the
tolerance gradually can trace the load-displacement curve. It was also
recommended that a modeler should analyze the relevant problem using more than
one inclusion pattern to be able to accurately predict the problem nonlinear
behavior.

The results of the examples demonstrated that the effect of discretization (either
the boundary elements or the inclusion diameter) is decreased in the nonlocal

approach than in the local one. Despite this observation, still this difference is
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slightly more than the one occurred in the finite element method. This could be
caused by the used circular inclusion type, which do not cover the overall
damaged domain in both the intersected and the staggered patterns. Therefore,
alternative types of inclusions (such as squares) should be furtherly investigated.
In this chapter the solution was obtained only for the raising part of the load-
displacement curve, however it could be extended to model the falling part via
using dispacement control or arclength algorithms.

In the following chapter a new family of FE will be used using the variational BIE
as discussed in chapter 2 in order to simulate damage in more efficient way than
the conventianal FE with respect to number of elements and the ability to use
elemnts with arbitrary number of nodes which facilitates the modeling of the
problem.
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Fig.(4.19): Load-displacement curve for example 4.6.2 with different boundary discretizations.
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Fig.(4.20): Load-displacement curve for example 4.6.3 with different boundary discretizations.
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Fig.(4.21): Load-displacement curve for example 4.6.2 with different inclusion patterns.
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Fig.(4.22): Load-displacement curve for example 4.6.3 with different inclusion patterns.
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Fig.(4.23): Load-displacement curve for example 4.6.2 with different inclusion diameters (intersected case).
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Fig.(4.24): Load-displacement curve for example 4.6.2 with different inclusion diameters (staggered case).
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Fig.(4.25): Load-displacement curve for example 4.6.3 with different inclusion diameters (intersected case)
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Fig.(4.26): Load-displacement curve for example 4.6.3 with different inclusion diameters (staggered case).
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Fig.(4.27): Load-displacement curve for example 4.6.2 with different tolerance level.
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Fig.(4.28): Load-displacement curve for example 4.6.3 with different tolerance level.
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Chapter 5: Damage simulation in Variational BIE

5.1. Introduction
In this chapter the VBIE is used to model damage. Using this

formulation, a special type of finite element is used. This special type gives the
ability to model the domain with lower number of degrees of freedom
compared to the conventional FEM and create a symmetric stiffness. Three
numerical examples are solved here to show the ability of the VBIE in

modeling damage.

5.2. Special type of finite elements using VBIE
Using the VBIE described in chapter 2 special type of FE is used

(Fundamental solution-based FE [59]). Instead of approximating the
displacement on the boundary and inside the domain with interpolation
function as in the conventional FE the displacement and traction are
approximated on the boundary with interpolation functions, but inside the
domain the displacement is calculated using the fundamental solution (recall
Eq.(2.30, 2.31)). In this special type large size element can be used compared
to the conventional FE.

In this work regular element is used i.e. the source points are placed
outside the element as shown in Fig.(5.1). Of course, the location of the source
points is obtained by trials. Without loss of generality quadratic boundary
elements are used to model each FE.

On modeling damage only the part near the domain which is supposed to
be damaged will be discretized with fine mesh and for the far part large

discretization will be used.
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Fig.(5.1): Finite element according to the VBIE

5.3. Solution algorithm

Consider the nonlinear load-displacement curve shown in Fig.(4.2), the
solution procedure is described as follows (given that the counter (i) represents

the current number of the nonlinear iterations):

Discretize the domain of the problem into elements.
Define the internal points inside each element.

1
2
3. Divide the total load into increments.
4

At each load increment (j), the applied load {F}j.'pp“ecl is computed as
follows:
applied __ applied
{F}; ={F};2;  +{AF} (5.1)

Where, {AF} is the load increment.
5. Use Eqg. (2.37) to compute the unknown displacement {u,}.

{(FYPPIY = K] {ued (5.2)

6. Compute the strain and the equivalent strain according to the used damage

model (see Appendix B) at all internal points as follows:
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k=N

En0) = Y €5, E: () (5.3)

k=1

7. Compute the maximum value of the equivalent strain &, Of the
undamaged elements.
8. In case of &4, > €p (Where g is the threshold strain, see Appendix B)

modify the Young’s modulus of the element to be:
Enew = (1 = D)E, (5.4)

Where, E, is Young’s modulus of the undamaged problem, D is the scalar
damage variable representing the ratio of the area damaged in the material (D is

calculated according to the assumed damage model, see Appendix B).

In case there are two points having the same &;,,, (i.e. cases of symmetric
problems) the same Young’s modulus is assigned for the two elements as in
Eq.(5.4). Otherwise, if €4, < €p and there is no damage at all elements, the

load is increased (new load increment is added) in other words, jump to step 4.

9. Compute the updated stiffness [K]J(.i)(by rebuilding Eg. (2.38)) and

compute the updated force vector as follows:
AP = KO (5.5)

10. Compute the force residual vector {Res} due to the change in the problem

stiffness resulting from the occurred damage, as follows:
(Res} = (F};*P"* — (F}}" (5.6)

11. Compute the maximum value of {Res} to be denoted by Res_max. In case

of Res_max > tolerance, continue to step 12 otherwise jump to step 16.

12.Compute the change in displacement {Au}gi) due to the residual force

vector {Res}, and the change in strain {As}g.i) from Eq. (5.3):
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{au}? = ([K]j."))_l{Resj} (5.7)

13. Compute the total displacement {ut}g.i), and total strain {et}g.i) at each

damaged point, as follows:
) = w7 + (af? (5.8)
{e)y = {e{7 + ae)’ (5.9)

14.Modify the damage variable according to the modified total strain in
Eq.(5.9) and then compute the modified Young’s modulus from Eq.(5.4).

15. Repeat steps from step 9 until the numerical value of the maximum force
residual Res_max is within the chosen tolerance. In other words, jump to
step 9.

16.Check the undamaged points: if there is no other point with &* > gp,
increase the applied load by {AF} (apply another load increment) and
repeat from step 4, otherwise if there is other point with €* > &, jump to
step8.

17.1n case the number of iterations (NI) reaches its maximum value for the
secant algorithm and Res_max > tolerance, decrease the load increment, in
other words, use one half of the load increment (j): and repeat the load

increment starting from step 4.
1
{AF}; = E{AF} j (5.10)

Hence, repeat steps starting from step 4.

This procedure is repeated until the problem reaches a stable damage pattern
under a certain load or reaches numerical instability, regardless, increasing

the number of nonlinear iterations or increasing the used tolerance level.
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5.4. Numerical examples

Three numerical examples are solved here to demonstrate the ability of
the variational formulation to model damage with coarse mesh compared to
that of the conventional finite element method. In the examples shown the
tolerance used is 1% and the maximum number of iterations is 50. The
location of the source points [ = 4m. The number of internal points in each

element is the number of nodes plus one

5.4.1.Simply supported beam

This problem as shown in Fig.(4.9) was previously solved by Jirasek
[25] using the FEM. The damage model according to Jirasek [25] as
mentioned in Appendix B is used. The material properties of the beam are
Eo=21670724658 N/m? v=0.2, £5=0.00012 and £=0.007. The beam
thickness is 100 mm.
Only half of the problem is solved due to symmetry. The problem is solved
using 2 discretization, 201 element (mesh 1 with size 5 mm near the mid of
the beam) and 697 element (mesh 2 with size 2.5 mm near the mid of the
beam) as shown in Fig.(5.2 and 5.3). The number of internal points in each

element is the number of nodes plus 1.

Fig.(5.2): Meshl of the domain of half of the problem in example 5.4.1.
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Fig.(5.3): Mesh 2 of the domain of half of the problem in example 5.4.1.
Figure (5.4) shows the load-displacement curve of the problem at the
midpoint of the beam. The results are compared to that of Jirasek [25] at
which the problem was solved using conventional finite element method
with two meshes 15 mm and 5 mm. Good agreement with the results is
shown, although course mesh is used compared to that of Jirasek [25],
which shows the ability of the variational formulations to use large size

elements with arbitrary number of nodes.
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Fig.(5.4): Load-displacement curve of example 5.4.1.
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5.4.2. Fixed-Fixed beam

This problem as shown in section 4.6.1 is solved here using the VBIE. The

problem is discretized as shown in Fig.(5.5, 5.6) with two meshes.

*®
L
L ]
q
®
L ]
L

-------------

Fig.(5.5): Mesh 1 of the domain of half of the problem in example 5.4.2.

9@ 9@ & *——0—@ *——0—@ *——r——0———0—

Fig.(5.6): Mesh 2 of the domain of half of the problem in example 5.4.2.
The load displacement curve at point A Fig.(4.4) is shown in Fig.(5.7) with

the solution of Pituba [50]. Good agreement with the results of [50] is achieved.
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Fig.(5.7): Load-displacement curve of example 5.4.2.
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5.4.3. Simple beam with notch
This problem shown in Fig.(4.13) was previously considered by Jirasek [25]

experimentally and verified by FEM. The damage model according to Jirasek
[25] as mentioned in Appendix B is used. The material properties of the beam
are Eo=2x10' N/m?, v=0.2, £5,=0.00012 and £,=0.007. The beam thickness is
100 mm. The main purpose of this example is to demonstrate the stability of
the proposed formulation to trace the damage in cases of stress
concentrations.

Only half of the problem is solved due to symmetry. The problem solved
using 2 discretization, 193 element (mesh 1) and 681 element (mesh 2) as
shown in Fig.(5.8 and 5.9).

Fig.(5.8): Mesh 1 of the domain of half of the problem in example 5.4.3.
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Fig.(5.9): Mesh 2 of the domain of half of the problem in example 5.4.3.
Figure (5.10) shows the load-displacement curve of the problem at the
midpoint of the beam. The results are compared to that of Jirasek [25] at
which the problem was solved using conventional finite element method
with two meshes 5 mm and 1.67 mm, also experimental results for the
problem are shown. Good agreement with the results is shown, although
course mesh is used compared to that of Jirasek [25], which shows the
ability of the variational formulations to use large size elements with

arbitrary number of nodes

122



Force (N)

1,750 4

1,500

1,250 A

1,000 A

eeeeee experimental upper bound [25]

ee @+ e experimental lower bound [25]
750

FEM 5 mm [25]

FEM 1.67 mm [25]
500

@= e= \/BIE--5mm

eseAee V/BIE--2.5mm
250

0.00 0.02 0.04 0.06 0.08 0.10
Displacement (mm)

Fig.(5.10): Load-displacement curve of example 5.4.3.
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5.5. Conclusions

It was shown in this chapter the ability of the variational formulation to
model the damage with good accuracy despite using large size elements

compared with the conventional finite element method.
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Chapter 6: Summary and Future work

6.1. Summary
In this Thesis:

Eshelby’s theory for equivalent inclusions was coupled with the indirect boundary
integral equation (as a meshless technique) to solve problems with inhomogeneity
for the first time using the indirect boundary integral equations.

Eshelby’s theory coupled with the direct boundary integral equation was used to
model damage where a finite-element like stiffness matrix is formed for the
damaged problems obtained directly on the boundary in a condensed form.

The variational formulation for 2D elasticity has been used to model damage
where the advantage of using coarse finite element compared to the conventional
finite element was shown.

6.2. Future work

1- Our algorithm for the damage can be modified to use the displacement control
or the arc length technique to be able to trace the snap through and snap back
curves.

2- Use of inclusions with other shapes than the circle to be able to improve the
modelling of the damaged areas (or the inhomogeneous parts).

3- Use adaptive techniques for the VBIE formulation.
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Appendix A
Eshelby tensor for interior (i = j) and exterior point (i # j) [3,24,30]:

Fori =j:

., 1
qimn = 81—v) (3 — 4v)(84mBin + 8qnbim) + (4v — 1)8416mn

Fori #j:
L
Sq]lmn = 8(1 _ V) {(pz +4v — 2)6q16mn
+ (pz —4v + 2)(6qm61n + aqnalm) + 4‘(1 - p2)5ql7jm7jn
+4(1 = 2v = p*)8pmaryt;
+4(v — .02)(6qmr,lr:n + alm‘r:q‘r:n + 5an,l‘r:m + 6ln7:qr,m)
+8(3p? — 21Ty TmTn}
Where,
_ R
P =T
The expression of Q for interior (i = j) and exterior point (i # j) [24,61]:
Fori =j:
i _ 1
mql = m (—(quxl + 6mlxq + 5qlxm) + 4v6q1xm
+4(1-v) (5qul + 6mlxq))
Fori # j:
3
anlql = 8(1 _ V) {(pz - 2)(6qul + 5mlxq + 5qlxm) + 4-7'(1 - pZ)Tqu,lT:m

+ 4véyxm + 4(1 - V)(gqul + 5mlxq)}
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Appendix B

There are two damage models used herein, the first is the Jacky Mazars’s damage

model [37,38] which is used for concrete and defines the local damage as follows:

1_[60(1—(1)_'_ a s
D(e*) = { &* exp(b(s* — ED)> e =e (B.1)
0 if € <e¢p

Where, ¢, is the threshold strain, a, b, are material constants obtained
experimentally.

The second damage model is according to [25,64] and define the local damage as

follows:

1 &p & —¢p s
D(e*) = e P & — &p if e =e (B.2)
0 if e <e¢p

Where, &; is a material constant defined in [25,64].

It has to be noted that Poisson’s ratio is assumed to be unchanged due to the

occurred damage.
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Appendix C

The analytical solution for stresses for Kirch problem is [58]:

[ R%/3 3R?

Our(1,0) =0, |1 — -y (E c0s26 + cos40) + ?605491 (C.1)
N , 3R?

Oxy(1,0) = 0, _T_Z(E sin260 + sm49) + ?sméwl (C.2)
[ R? 3R2

0yy(1,0) =0, _F(E cos26 — cos40) - Fcoszwl (C.3)

in which, R and r are as define in Fig.(4.4).
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